An Ultra-Simple Charge Supplementary Strategy for High Performance Rotary Triboelectric Nanogenerators

被引:31
|
作者
Feng, Hongqing [1 ,2 ]
Bai, Yuan [1 ,3 ,4 ]
Qiao, Lei [5 ]
Li, Zhe [6 ]
Wang, Engui [1 ,3 ,7 ]
Chao, Shengyu [1 ,2 ]
Qu, Xuecheng [1 ,2 ]
Cao, Yu [3 ]
Liu, Zhuo [8 ]
Han, Xi [3 ,4 ]
Luo, Ruizeng [3 ,4 ]
Shan, Yizhu [1 ,2 ]
Li, Zhou [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Beijing Inst Nanoenergy & Nanosyst, Beijing Key Lab Micronano Energy & Sensor, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[4] Guangxi Univ, Coll Chem & Chem Engn, Nanning 530004, Peoples R China
[5] Capital Med Univ, Xuanwu Hosp, Beijing 100053, Peoples R China
[6] Beijing Inst Technol, Inst Engn Med, Sch Life Sci, Beijing 100081, Peoples R China
[7] Guangxi Univ, Sch Resources Environm & Mat, Nanning 530004, Peoples R China
[8] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Key Lab Biomech & Mechanobiol,Minist Educ, Beijing 100191, Peoples R China
基金
北京市自然科学基金; 中国博士后科学基金; 中国国家自然科学基金;
关键词
bacteria sterilization; charge supplement; high output; plasma; triboelectric nanogenerators; PLASMA; DENSITY; ENERGY; SENSOR;
D O I
10.1002/smll.202101430
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Free-standing rotary triboelectric nanogenerators (rTENG) can accomplish special tasks which require both high voltage and high frequency. However, the reported high performance rTENG all have complex structures for output enhancement. In this work, an ultra-simple strategy to build high performance rTENG is developed. With only one small paper strip added to the conventional structure, the output of the TENG is promoted hugely. The voltage is triplicated to 2.3 kV, and the current and charge are quintupled to 133 mu A and 197 nC, respectively. The small paper strip, with the merits of ultra-simplicity, wide availability, easy accessibility and low cost, functions as a super-effective charge supplement. This simple and delicate structure enables ultra-high durability with the 2.3 kV voltage output 100% maintained after 1 000 000 cycles. This charge supplementary strategy is universally effective for many other materials, and decouples the output enhancement from any friction or contact on the metal electrodes, emphasizing a critical working principle for the rTENG. Atmospheric cold plasma is generated using the paper strip rTENG (ps-rTENG), which demonstrates strong ability to do bacteria sterilization. This simple and persistent charge supplementary strategy can be easily adopted by other designs to promote the output even further.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators
    Jin, Long
    Xiao, Xiao
    Deng, Weili
    Nashalian, Ardo
    He, Daren
    Raveendran, Vidhur
    Yan, Cheng
    Su, Hai
    Chu, Xiang
    Yang, Tao
    Li, Wen
    Yang, Weiqing
    Chen, Jun
    NANO LETTERS, 2020, 20 (09) : 6404 - 6411
  • [42] Design and construction of high-performance triboelectric nanogenerators and their biomedical applications
    Zhou, Tianxiang
    Wei, Jingyi
    Zhang, Xinyue
    Wu, Liang
    Guo, Sufang
    An, Qi
    Feng, Zeguo
    Guo, Kaikai
    APPLIED MATERIALS TODAY, 2025, 42
  • [43] Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators
    Deng, Weili
    Zhou, Yihao
    Zhao, Xun
    Zhang, Songlin
    Zou, Yongjiu
    Xu, Jing
    Yeh, Min-Hsin
    Guo, Hengyu
    Chen, Jun
    ACS NANO, 2020, 14 (07) : 9050 - 9058
  • [44] Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators
    Yerzhan Nurmakanov
    Gulnur Kalimuldina
    Galymzhan Nauryzbayev
    Desmond Adair
    Zhumabay Bakenov
    Nanoscale Research Letters, 16
  • [45] Empowering high-performance triboelectric nanogenerators: advanced materials strategies
    Liu, Xiaoru
    Zhao, Zhihao
    Wang, Jie
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [46] Perspectives of Material Optimization Strategies for High-Performance Triboelectric Nanogenerators
    Ji, Haifeng
    Sun, Cong
    Sun, Xuhui
    Wen, Zhen
    ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (05)
  • [47] Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance
    Jang, Shin
    Kim, Hyounjin
    Oh, Je Hoon
    NANOSCALE, 2017, 9 (35) : 13034 - 13041
  • [48] Charge Dispersion Strategy for High-Performance and Rain-Proof Triboelectric Nanogenerator
    Sun, Qizeng
    Ren, Guozhang
    He, Shunhao
    Tang, Biao
    Li, Yijia
    Wei, Yuewen
    Shi, Xuewen
    Tan, Shenxing
    Yan, Ren
    Wang, Kaili
    Yu, Liuyingzi
    Wang, Junjie
    Gao, Kun
    Zhu, Chengcheng
    Song, Yaxin
    Gong, Zhongyan
    Lu, Gang
    Huang, Wei
    Yu, Hai-Dong
    ADVANCED MATERIALS, 2024, 36 (08)
  • [49] Ultra-Robust and High-Performance Rotational Triboelectric Nanogenerator by Bearing Charge Pumping
    Fu, Xianpeng
    Qin, Yuhan
    Zhang, Zhi
    Liu, Guoxu
    Cao, Jie
    Fan, Beibei
    Wang, Zhaozheng
    Wang, Zheng
    Zhang, Chi
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (02)
  • [50] Ultra-Robust and High-Performance Rotational Triboelectric Nanogenerator by Bearing Charge Pumping
    Xianpeng Fu
    Yuhan Qin
    Zhi Zhang
    Guoxu Liu
    Jie Cao
    Beibei Fan
    Zhaozheng Wang
    Zheng Wang
    Chi Zhang
    Energy & Environmental Materials, 2024, 7 (02) : 347 - 353