Tensor isomorphism by conjugacy of Lie algebras

被引:0
|
作者
Brooksbank, Peter A. [1 ]
Maglione, Joshua [2 ]
Wilson, James B. [3 ]
机构
[1] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
[2] Otto Guericke Univ Magdeburg, Dept Math, D-39106 Magdeburg, Germany
[3] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
Tensor isomorphism; Derivation algebra; Lie algebra; TESTING ISOMORPHISM; CONSTRUCTION; RINGS;
D O I
10.1016/j.jalgebra.2022.04.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an algorithm to decide isomorphism between tensors. The algorithm uses the Lie algebra of derivations of a tensor to compress the space in which the search takes place to a so-called densor space. To make the method practicable we give a polynomial-time algorithm to solve a generalization of module isomorphism for a common class of Lie modules. As a consequence, we show that isomorphism testing is in polynomial time for tensors whose derivation algebras are classical Lie algebras and whose densor spaces are 1-dimensional. The method has been implemented in the MAGMA computer algebra system. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:790 / 807
页数:18
相关论文
共 50 条
  • [31] On the triple tensor product of nilpotent Lie algebras
    Shamsaki, Afsaneh
    Niroomand, Peyman
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5879 - 5887
  • [32] A note on the tensor product of Lie soluble algebras
    Catino, F.
    Miccoli, M. M.
    Nuccio, C.
    ARCHIV DER MATHEMATIK, 2007, 89 (01) : 41 - 46
  • [33] A note on the tensor product of Lie soluble algebras
    F. Catino
    M. M. Miccoli
    C. Nuccio
    Archiv der Mathematik, 2007, 89 : 41 - 46
  • [34] SOME PROPERTIES ON THE TENSOR SQUARE OF LIE ALGEBRAS
    Niroomand, Peyman
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (05)
  • [35] ON THE CONJUGACY OF NILPOTENT ELEMENTS IN THE CLASSICAL LIE-ALGEBRAS IN RELATION TO THEIR REPRESENTATIONS
    UMEDA, T
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1986, 26 (03): : 513 - 545
  • [36] Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras
    Bate, Michael
    Martin, Benjamin
    Roehrle, Gerhard
    Tange, Rudolf
    MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) : 809 - 832
  • [37] Locally trivial principal homogeneous spaces and conjugacy theorems for Lie algebras
    Pianzola, A
    JOURNAL OF ALGEBRA, 2004, 275 (02) : 600 - 614
  • [38] Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras
    Michael Bate
    Benjamin Martin
    Gerhard Röhrle
    Rudolf Tange
    Mathematische Zeitschrift, 2011, 269 : 809 - 832
  • [39] Intertwining operator algebras and vertex tensor categories for affine Lie algebras
    Huang, YZ
    Lepowsky, J
    DUKE MATHEMATICAL JOURNAL, 1999, 99 (01) : 113 - 134
  • [40] ISOMORPHISM OF SOME SIMPLE 2-GRADED LIE-ALGEBRAS
    DJOKOVIC, DZ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1977, 29 (02): : 289 - 294