SOME PROPERTIES ON THE TENSOR SQUARE OF LIE ALGEBRAS

被引:13
|
作者
Niroomand, Peyman [1 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
关键词
Tensor square of Lie algebra; Schur multiplier of Lie algebra; SCHUR MULTIPLIER; PRODUCTS;
D O I
10.1142/S0219498812500855
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we extend the results of [2, 4] for the tensor square of Lie algebras. More precisely, for any Lie algebra L with L/L-2 of finite dimension, we prove L circle times L congruent to L square L circle times L Lambda L and Z(Lambda) (L) boolean AND L-2 = Z(circle times)(L). Moreover, we show that L Lambda L is isomorphic to derived subalgebra of a cover of L, and finally we give a free presentation for it.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Some properties of fuzzy Lie algebras
    Keyun, Q
    Yang, X
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 91 - 91
  • [2] Some Properties of Nilpotent Lie Algebras
    Eghdami, Hossein
    Gholamian, Ali
    MATEMATIKA, 2013, 29 (02) : 173 - 178
  • [3] On some properties preserved by the non-abelian tensor product of Hom-Lie algebras
    Casas, J. M.
    Khmaladze, E.
    Pacheco Rego, N.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (04): : 607 - 626
  • [4] On Lie submodules and tensor algebras
    T. V. Shulman
    V. S. Shulman
    Functional Analysis and Its Applications, 2009, 43 : 158 - 161
  • [5] On Lie Submodules and Tensor Algebras
    Shulman, T. V.
    Shulman, V. S.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2009, 43 (02) : 158 - 161
  • [6] Some Properties of Almost Abelian Lie Algebras
    Gorbatsevich, V. V.
    RUSSIAN MATHEMATICS, 2020, 64 (04) : 21 - 34
  • [7] Some Properties of Almost Abelian Lie Algebras
    V. V. Gorbatsevich
    Russian Mathematics, 2020, 64 : 21 - 34
  • [8] Some properties on isoclinism of Lie algebras and covers
    Salemkar, Ali Reza
    Bigdely, Hadi
    Alamian, Vahid
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2008, 7 (04) : 507 - 516
  • [9] On the tensor square of non-abelian nilpotent finite-dimensional Lie algebras
    Niroomand, Peyman
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (08): : 831 - 836
  • [10] Tensor isomorphism by conjugacy of Lie algebras
    Brooksbank, Peter A.
    Maglione, Joshua
    Wilson, James B.
    JOURNAL OF ALGEBRA, 2022, 604 : 790 - 807