Robust data-driven inference in the regression-discontinuity design

被引:336
|
作者
Calonico, Sebastian [1 ]
Cattaneo, Matias D. [2 ]
Titiunik, Rocio [2 ]
机构
[1] Univ Miami, Coral Gables, FL 33124 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
来源
STATA JOURNAL | 2014年 / 14卷 / 04期
基金
美国国家科学基金会;
关键词
st0366; rdrobust; rdbwselect; rdplot; regression discontinuity (RD); sharp RD; sharp kink RD; fuzzy RD; fuzzy kink RD; treatment effects; local polynomials; bias correction; bandwidth selection; RD plots; PROGRAM-EVALUATION; ESTIMATORS;
D O I
10.1177/1536867X1401400413
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this article, we introduce three commands to conduct robust data-driven statistical inference in regression-discontinuity (RD) designs. First, we present rdrobust, a command that implements the robust bias-corrected confidence intervals proposed in Calonico, Cattaneo, and Titiunik (2014d, Econometrica 82: 2295-2326) for average treatment effects at the cutoff in sharp RD, sharp kink RD, fuzzy RD, and fuzzy kink RD designs. This command also implements other conventional nonparametric RD treatment-effect point estimators and confidence intervals. Second, we describe the companion command rdbwselect, which implements several bandwidth selectors proposed in the RD literature. Following the results in Calonico, Cattaneo, and Titiunik (2014a, Working paper, University of Michigan), we also introduce rdplot, a command that implements several data-driven choices of the number of bins in evenly spaced and quantile-spaced partitions that are used to construct the RD plots usually encountered in empirical applications. A companion R package is described in Calonico, Cattaneo, and Titiunik (2014b, Working paper, University of Michigan).
引用
收藏
页码:909 / 946
页数:38
相关论文
共 50 条
  • [31] The interest premium for left government: Regression-discontinuity estimates
    Ornstein, Joseph T.
    Hays, Jude C.
    Franzese, Robert J., Jr.
    [J]. ECONOMICS & POLITICS, 2022, 34 (03) : 429 - 443
  • [32] RANDOM MEASUREMENT ERROR DOES NOT BIAS THE TREATMENT EFFECT ESTIMATE IN THE REGRESSION-DISCONTINUITY DESIGN
    CAPPELLERI, JC
    TROCHIM, WMK
    STANLEY, TD
    REICHARDT, CS
    [J]. EVALUATION REVIEW, 1991, 15 (04) : 395 - 419
  • [33] The Prekindergarten Age-Cutoff Regression-Discontinuity Design: Methodological Issues and Implications for Application
    Lipsey, Mark W.
    Weiland, Christina
    Yoshikawa, Hirokazu
    Wilson, Sandra Jo
    Hofer, Kerry G.
    [J]. EDUCATIONAL EVALUATION AND POLICY ANALYSIS, 2015, 37 (03) : 296 - 313
  • [34] Application of regression-discontinuity analysis in pharmaceutical health services research
    Zuckerman, IH
    Lee, E
    Wutoh, AK
    Xue, ZY
    Stuart, B
    [J]. HEALTH SERVICES RESEARCH, 2006, 41 (02) : 550 - 563
  • [35] Data-driven robust optimization
    Bertsimas, Dimitris
    Gupta, Vishal
    Kallus, Nathan
    [J]. MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 235 - 292
  • [36] Data-driven robust optimization
    Dimitris Bertsimas
    Vishal Gupta
    Nathan Kallus
    [J]. Mathematical Programming, 2018, 167 : 235 - 292
  • [37] Data-Driven Inference of Representation Invariants
    Miltner, Anders
    Padhi, Saswat
    Millstein, Todd
    Walker, David
    [J]. PROCEEDINGS OF THE 41ST ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '20), 2020, : 1 - 15
  • [38] Robust Data-Driven Design for Fault Diagnosis of Industrial Drives
    Rashid, Umair
    Abbasi, Muhammad Asim
    Khan, Abdul Qayyum
    Irfan, Muhammad
    Abid, Muhammad
    Nowakowski, Grzegorz
    [J]. ELECTRONICS, 2022, 11 (23)
  • [39] A Quasi-Experimental Design for Studies on the Impact of Administrative Decisions: Applications and Extensions of the Regression-Discontinuity Design
    Mellor, Steven
    Mark, Melvin M.
    [J]. ORGANIZATIONAL RESEARCH METHODS, 1998, 1 (03) : 315 - 333
  • [40] Robust uniform inference for quantile treatment effects in regression discontinuity designs
    Chiang, Harold D.
    Hsu, Yu-Chin
    Sasaki, Yuya
    [J]. JOURNAL OF ECONOMETRICS, 2019, 211 (02) : 589 - 618