Robust data-driven inference in the regression-discontinuity design

被引:361
|
作者
Calonico, Sebastian [1 ]
Cattaneo, Matias D. [2 ]
Titiunik, Rocio [2 ]
机构
[1] Univ Miami, Coral Gables, FL 33124 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
来源
STATA JOURNAL | 2014年 / 14卷 / 04期
基金
美国国家科学基金会;
关键词
st0366; rdrobust; rdbwselect; rdplot; regression discontinuity (RD); sharp RD; sharp kink RD; fuzzy RD; fuzzy kink RD; treatment effects; local polynomials; bias correction; bandwidth selection; RD plots; PROGRAM-EVALUATION; ESTIMATORS;
D O I
10.1177/1536867X1401400413
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this article, we introduce three commands to conduct robust data-driven statistical inference in regression-discontinuity (RD) designs. First, we present rdrobust, a command that implements the robust bias-corrected confidence intervals proposed in Calonico, Cattaneo, and Titiunik (2014d, Econometrica 82: 2295-2326) for average treatment effects at the cutoff in sharp RD, sharp kink RD, fuzzy RD, and fuzzy kink RD designs. This command also implements other conventional nonparametric RD treatment-effect point estimators and confidence intervals. Second, we describe the companion command rdbwselect, which implements several bandwidth selectors proposed in the RD literature. Following the results in Calonico, Cattaneo, and Titiunik (2014a, Working paper, University of Michigan), we also introduce rdplot, a command that implements several data-driven choices of the number of bins in evenly spaced and quantile-spaced partitions that are used to construct the RD plots usually encountered in empirical applications. A companion R package is described in Calonico, Cattaneo, and Titiunik (2014b, Working paper, University of Michigan).
引用
收藏
页码:909 / 946
页数:38
相关论文
共 50 条
  • [22] Robust data-driven state-feedback design
    Berberich, Julian
    Koch, Anne
    Scherer, Carsten W.
    Allgoewer, Frank
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 1532 - 1538
  • [23] Extending the regression-discontinuity approach to multiple assignment variables
    Papay, John P.
    Willett, John B.
    Murnane, Richard J.
    JOURNAL OF ECONOMETRICS, 2011, 161 (02) : 203 - 207
  • [24] HEAPING-INDUCED BIAS IN REGRESSION-DISCONTINUITY DESIGNS
    Barreca, Alan I.
    Lindo, Jason M.
    Waddell, Glen R.
    ECONOMIC INQUIRY, 2016, 54 (01) : 268 - 293
  • [25] Remedial education and student achievement: A regression-discontinuity analysis
    Jacob, BA
    Lefgren, L
    REVIEW OF ECONOMICS AND STATISTICS, 2004, 86 (01) : 226 - 244
  • [26] Regression-Discontinuity Analysis: A Survey of Recent Developments in Economics
    van der Klaauw, Wilbert
    LABOUR-ENGLAND, 2008, 22 (02): : 219 - 245
  • [27] REPORTS OF THE DEATH OF REGRESSION-DISCONTINUITY ANALYSIS ARE GREATLY EXAGGERATED
    REICHARDT, CS
    TROCHIM, WMK
    CAPPELLERI, JC
    EVALUATION REVIEW, 1995, 19 (01) : 39 - 63
  • [28] Does Energy Consumption Respond to Price Shocks? Evidence from a Regression-Discontinuity Design
    Bastos, Paulo
    Castro, Lucio
    Cristia, Julian
    Scartascini, Carlos
    JOURNAL OF INDUSTRIAL ECONOMICS, 2015, 63 (02): : 249 - 278
  • [29] Exploiting Regression-Discontinuity Design to Estimate Peer Effects in College - The Case of Class Attendance
    Chen, Qihui
    Okediji, Tade
    Tian Guoqiang
    ECONOMICS BULLETIN, 2015, 35 (03): : 1563 - 1563
  • [30] The interest premium for left government: Regression-discontinuity estimates
    Ornstein, Joseph T.
    Hays, Jude C.
    Franzese, Robert J., Jr.
    ECONOMICS & POLITICS, 2022, 34 (03) : 429 - 443