Robust data-driven inference in the regression-discontinuity design

被引:336
|
作者
Calonico, Sebastian [1 ]
Cattaneo, Matias D. [2 ]
Titiunik, Rocio [2 ]
机构
[1] Univ Miami, Coral Gables, FL 33124 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
来源
STATA JOURNAL | 2014年 / 14卷 / 04期
基金
美国国家科学基金会;
关键词
st0366; rdrobust; rdbwselect; rdplot; regression discontinuity (RD); sharp RD; sharp kink RD; fuzzy RD; fuzzy kink RD; treatment effects; local polynomials; bias correction; bandwidth selection; RD plots; PROGRAM-EVALUATION; ESTIMATORS;
D O I
10.1177/1536867X1401400413
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this article, we introduce three commands to conduct robust data-driven statistical inference in regression-discontinuity (RD) designs. First, we present rdrobust, a command that implements the robust bias-corrected confidence intervals proposed in Calonico, Cattaneo, and Titiunik (2014d, Econometrica 82: 2295-2326) for average treatment effects at the cutoff in sharp RD, sharp kink RD, fuzzy RD, and fuzzy kink RD designs. This command also implements other conventional nonparametric RD treatment-effect point estimators and confidence intervals. Second, we describe the companion command rdbwselect, which implements several bandwidth selectors proposed in the RD literature. Following the results in Calonico, Cattaneo, and Titiunik (2014a, Working paper, University of Michigan), we also introduce rdplot, a command that implements several data-driven choices of the number of bins in evenly spaced and quantile-spaced partitions that are used to construct the RD plots usually encountered in empirical applications. A companion R package is described in Calonico, Cattaneo, and Titiunik (2014b, Working paper, University of Michigan).
引用
收藏
页码:909 / 946
页数:38
相关论文
共 50 条
  • [1] rdrobust: An R Package for Robust Nonparametric Inference in Regression-Discontinuity Designs
    Calonico, Sebastian
    Cattaneo, Matias D.
    Titiunik, Rocio
    [J]. R JOURNAL, 2015, 7 (01): : 38 - 51
  • [2] The Analysis of the Regression-Discontinuity Design in R
    Thoemmes, Felix
    Liao, Wang
    Jin, Ze
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2017, 42 (03) : 341 - 360
  • [3] Optimal Data-Driven Regression Discontinuity Plots
    Calonico, Sebastian
    Cattaneo, Matias D.
    Titiunik, Rocio
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) : 1753 - 1769
  • [4] ROBUST NONPARAMETRIC CONFIDENCE INTERVALS FOR REGRESSION-DISCONTINUITY DESIGNS
    Calonico, Sebastian
    Cattaneo, Matias D.
    Titiunik, Rocio
    [J]. ECONOMETRICA, 2014, 82 (06) : 2295 - 2326
  • [5] Identification and estimation of treatment effects with a regression-discontinuity design
    Hahn, JY
    Todd, P
    Van der Klaauw, W
    [J]. ECONOMETRICA, 2001, 69 (01) : 201 - 209
  • [6] Data-driven discontinuity detection in derivatives of a regression function
    Gijbels, I
    Goderniaux, AC
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (04) : 851 - 871
  • [7] SIFTING STATISTICAL SIGNIFICANCE FROM THE ARTIFACT OF REGRESSION-DISCONTINUITY DESIGN
    STANLEY, TD
    ROBINSON, A
    [J]. EVALUATION REVIEW, 1990, 14 (02) : 166 - 181
  • [8] Class-Size Caps, Sorting, and the Regression-Discontinuity Design
    Urquiola, Miguel
    Verhoogen, Eric
    [J]. AMERICAN ECONOMIC REVIEW, 2009, 99 (01): : 179 - 215
  • [9] rdrobust: Software for regression-discontinuity designs
    Calonico, Sebastian
    Cattaneo, Matias D.
    Farrell, Max H.
    Titiunik, Rocio
    [J]. STATA JOURNAL, 2017, 17 (02): : 372 - 404
  • [10] ON NONPARAMETRIC INFERENCE IN THE REGRESSION DISCONTINUITY DESIGN
    Kamat, Vishal
    [J]. ECONOMETRIC THEORY, 2018, 34 (03) : 694 - 703