A framework based on physics-informed neural networks and extreme learning for the analysis of composite structures

被引:26
|
作者
Yan, C. A. [1 ]
Vescovini, R. [1 ]
Dozio, L. [1 ]
机构
[1] Politecn Milan, Dipartimento Sci & Tecnol Aerosp, Via La Masa 34, I-20156 Milan, Italy
关键词
Physics-informed neural networks; Extreme learning machine; Structural analysis; Shell structures;
D O I
10.1016/j.compstruc.2022.106761
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a novel approach for solving direct problems in linear elasticity involving plate and shell structures. The method relies upon a combination of Physics-Informed Neural Networks and Extreme Learning Machine. A subdomain decomposition method is proposed as a viable mean for studying structures composed by multiple plate/shell elements, as well as improving the solution in domains composed by one single element. Sensitivity studies are presented to gather insight into the effects of different network configurations and sets of hyperparameters. Within the framework presented here, direct problems can be solved with or without available sampled data. In addition, the approach can be extended to the solution of inverse problems. The results are compared with exact elasticity solutions and finite element calculations, illustrating the potential of the approach as an effective mean for addressing a wide class of problems in structural mechanics. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [2] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [3] Stochastic Memristor Modeling Framework Based on Physics-Informed Neural Networks
    Kim, Kyeongmin
    Lee, Jonghwan
    Applied Sciences (Switzerland), 2024, 14 (20):
  • [4] THE BUCKLING ANALYSIS OF THIN-WALLED STRUCTURES BASED ON PHYSICS-INFORMED NEURAL NETWORKS
    Feng T.
    Liang W.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (11): : 2539 - 2553
  • [5] Physics-informed neural networks: A deep learning framework for solving the vibrational problems
    Wang, Xusheng
    Zhang, Liang
    ADVANCES IN NANO RESEARCH, 2021, 11 (05) : 495 - 519
  • [6] iPINNs: incremental learning for Physics-informed neural networks
    Dekhovich, Aleksandr
    Sluiter, Marcel H. F.
    Tax, David M. J.
    Bessa, Miguel A.
    ENGINEERING WITH COMPUTERS, 2024, : 389 - 402
  • [7] Learning in sinusoidal spaces with physics-informed neural networks
    Wong J.C.
    Ooi C.C.
    Gupta A.
    Ong Y.S.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 985 - 1000
  • [8] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [9] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [10] Ensemble Learning with Physics-Informed Neural Networks for Harsh Time Series Analysis
    Kayisu, Antoine Kazadi
    Fasouli, Paraskevi
    Kambale, Witesyavwirwa Vianney
    Bokoro, Pitshou
    Kyamakya, Kyandoghere
    ADVANCES IN REAL-TIME AND AUTONOMOUS SYSTEMS, 2023, 2024, 1009 : 110 - 121