Adding local search to particle swarm optimization

被引:11
|
作者
Das, Sanjoy [1 ]
Koduru, Praveen [1 ]
Gui, Min [1 ]
Cochran, Michael [1 ]
Wareing, Austin [1 ]
Welch, Stephen M. [1 ]
Babin, Bruce R. [1 ]
机构
[1] Kansas State Univ, Dept Elect & Comp Engn, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/CEC.2006.1688340
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimization is a stochastic algorithm for optimizing continuous functions. It uses a population of particles that follow trajectories through the search space towards good optima. This paper proposes adding a local search component to PSO to improve its convergence speed. Two possible methods are discussed. The first adds a term containing estimated gradient information to the velocity of each particle. The second explicitly incorporates the Nelder-Mead algorithm, a known local search technique, within PSO. The suggested methods have been applied to the problem of estimating parameters of a gene network model. Results indicate the effectiveness of the proposed strategies.
引用
收藏
页码:428 / +
页数:2
相关论文
共 50 条
  • [31] Hybrid Particle Swarm Optimization with Iterative Local Search for DNA Sequence Assembly
    Rajagopal, Indumathy
    Sankareswaran, Uma Maheswari
    CURRENT BIOINFORMATICS, 2015, 10 (04) : 393 - 400
  • [32] Particle swarm optimization with fast local search for the blind travelling salesman problem
    Lopes, HS
    Coelho, LS
    HIS 2005: 5TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, : 245 - 250
  • [33] Improved quantum-behaved particle swarm optimization with local search strategy
    Xi M.
    Wu X.
    Sheng X.
    Sun J.
    Xu W.
    Xi, Maolong (ximl@wxit.edu.cn), 1600, SAGE Publications Inc. (11): : 3 - 12
  • [34] Timetable Scheduling Using a Hybrid Particle Swarm Optimization with Local Search Approach
    Psarra, Evgenia
    Apostolou, Dimitrios
    2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS (IISA), 2019, : 318 - 325
  • [35] Adaptive Memetic Particle Swarm Optimization with Variable Local Search Pool Size
    Voglis, Costas
    Hadjidoukas, Panagiotis E.
    Parsopoulos, Konstantinos E.
    Papageorgiou, Dimitrios G.
    Lagaris, Isaac E.
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 113 - 120
  • [36] Comprehensive Learning Particle Swarm Optimization Algorithm With Local Search for Multimodal Functions
    Cao, Yulian
    Zhang, Han
    Li, Wenfeng
    Zhou, Mengchu
    Zhang, Yu
    Chaovalitwongse, Wanpracha Art
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (04) : 718 - 731
  • [37] Quantum-behaved particle swarm optimization with generalized local search operator for global optimization
    Wang, Jiahai
    Zhou, Yalan
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2007, 4682 : 851 - 860
  • [38] A Species Conservation-Based Particle Swarm Optimization with Local Search for Dynamic Optimization Problems
    Shen, Dingcai
    Qian, Bei
    Wang, Min
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2020, 2020
  • [39] Improving particle swarm optimization performance with local search for high-dimensional function optimization
    Wang, Yong-Jun
    OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (05): : 781 - 795
  • [40] Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search for Large Scale Global Optimization
    Zhao, S. Z.
    Liang, J. J.
    Suganthan, P. N.
    Tasgetiren, M. F.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3845 - +