Adding local search to particle swarm optimization

被引:11
|
作者
Das, Sanjoy [1 ]
Koduru, Praveen [1 ]
Gui, Min [1 ]
Cochran, Michael [1 ]
Wareing, Austin [1 ]
Welch, Stephen M. [1 ]
Babin, Bruce R. [1 ]
机构
[1] Kansas State Univ, Dept Elect & Comp Engn, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/CEC.2006.1688340
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimization is a stochastic algorithm for optimizing continuous functions. It uses a population of particles that follow trajectories through the search space towards good optima. This paper proposes adding a local search component to PSO to improve its convergence speed. Two possible methods are discussed. The first adds a term containing estimated gradient information to the velocity of each particle. The second explicitly incorporates the Nelder-Mead algorithm, a known local search technique, within PSO. The suggested methods have been applied to the problem of estimating parameters of a gene network model. Results indicate the effectiveness of the proposed strategies.
引用
收藏
页码:428 / +
页数:2
相关论文
共 50 条
  • [21] A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization
    Ding, Jianli
    Liu, Jin
    Chowdhury, Kaushik Roy
    Zhang, Wensheng
    Hu, Qiping
    Lei, Jeff
    NEUROCOMPUTING, 2014, 137 : 261 - 267
  • [22] Novelty Search in Particle Swarm Optimization
    Ulrich, Adam
    Viktorin, Adam
    Pluhacek, Michal
    Kadavy, Tomas
    Krnavek, Jan
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [23] A hybrid search method of wrapper feature selection by chaos particle swarm optimization and local search
    Javidi, Mohammad Masoud
    Emami, Nasibeh
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2016, 24 (05) : 3852 - 3861
  • [24] Surrogate-Assisted Particle Swarm with Local Search for Expensive Constrained Optimization
    Regis, Rommel G.
    BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS, BIOMA 2018, 2018, 10835 : 246 - 257
  • [25] Particle swarm optimization method with combination of rapid information communication and local search
    Jiang, Jianguo
    Ye, Hua
    Liu, Huimin
    Zhang, Liyuan
    Meng, Hongwei
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2015, 36 (05): : 687 - 691
  • [26] Superior solution guided particle swarm optimization combined with local search techniques
    Wu, Guohua
    Qiu, Dishan
    Yu, Ying
    Pedrycz, Witold
    Ma, Manhao
    Li, Haifeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (16) : 7536 - 7548
  • [27] A hybrid particle swarm optimization with local search for stochastic resource allocation problem
    James T. Lin
    Chun-Chih Chiu
    Journal of Intelligent Manufacturing, 2018, 29 : 481 - 495
  • [28] A quantum based local search enhanced particle swarm optimization for binary spaces
    Ozsoydan, Fehmi Burcin
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2018, 24 (04): : 675 - 681
  • [29] Particle swarm optimization with dynamic local search for frequency modulation parameter identification
    Department of Fire Engineering, The Chinese People's Armed Police Force Academy, Langfang 065000, China
    不详
    Chen, L. (chenhb_2011@yahoo.cn), 2012, Advanced Institute of Convergence Information Technology (04)
  • [30] A hybrid particle swarm optimization with local search for stochastic resource allocation problem
    Lin, James T.
    Chiu, Chun-Chih
    JOURNAL OF INTELLIGENT MANUFACTURING, 2018, 29 (03) : 481 - 495