Homeomorphism groups of Sierpinski carpets and Erdos space

被引:1
|
作者
Dijkstra, Jan J. [1 ]
Visser, Dave [1 ]
机构
[1] Vrije Univ Amsterdam, Fac Exacte Wetenschappen Afdeling Wiskunde, NL-1081 HV Amsterdam, Netherlands
关键词
homeomorphism group; Sierpinski carpet; Erdos space; almost zero-dimensional;
D O I
10.4064/fm207-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Eras space E is the "rational" Hilbert space, that is, the set of vectors in l(2) with all coordinates rational. Eras proved that E is one-dimensional and homeomorphic to its own square x which makes it an important example in dimension theory. Dijkstra and van Mill found topological characterizations of Let M(n)(n+1), n is an element of N, be the n-dimensional Menger continuum in R(n+1), also known as the n-dimensional Sierpinski carpet, and let D be a countable dense subset of M(n)(n+ 1). We consider the topological group H(M(n)(n+1), D) of all autohomeomorphisms of M(n)(n+1) that map D onto itself, equipped with the compact-open topology. We show that under some conditions on D the space H(M(n)(n+1), D) is homeomorphic to E for n is an element of N \ {3}.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Erdos Space and Homeomorphism Groups of Manifolds
    Dijkstra, Jan J.
    van Mill, Jan
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 208 (979) : 1 - +
  • [2] Homeomorphism groups of manifolds and Erdos space
    Dijkstra, JJ
    Van Mill, J
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 10 : 29 - 38
  • [3] Uniformization of Sierpinski Carpets by Square Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 91 - 177
  • [4] Quantum transport in Sierpinski carpets
    van Veen, Edo
    Yuan, Shengjun
    Katsnelson, Mikhail I.
    Polini, Marco
    Tomadin, Andrea
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [5] Harmonic Functions on Sierpinski Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 9 - 89
  • [6] The pore structure of Sierpinski carpets
    Franz, A
    Schulzky, C
    Tarafdar, S
    Hoffmann, KH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42): : 8751 - 8765
  • [7] On Sierpinski carpets and doubling measures
    Peng, Fengji
    Wen, Shengyou
    NONLINEARITY, 2014, 27 (06) : 1287 - 1298
  • [8] MULTIFRACTAL ANALYSIS OF SIERPINSKI CARPETS
    KIM, JH
    YOON, DH
    KIM, I
    KIM, MH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1993, 26 : S402 - S405
  • [9] A class of Sierpinski carpets with overlaps
    Zou, Yuru
    Yao, Yuanyuan
    Li, Wenxia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 1422 - 1432
  • [10] Connected generalised Sierpinski carpets
    Cristea, Ligia Loreta
    Steinsky, Bertran
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (07) : 1157 - 1162