Homeomorphism groups of Sierpinski carpets and Erdos space

被引:1
|
作者
Dijkstra, Jan J. [1 ]
Visser, Dave [1 ]
机构
[1] Vrije Univ Amsterdam, Fac Exacte Wetenschappen Afdeling Wiskunde, NL-1081 HV Amsterdam, Netherlands
关键词
homeomorphism group; Sierpinski carpet; Erdos space; almost zero-dimensional;
D O I
10.4064/fm207-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Eras space E is the "rational" Hilbert space, that is, the set of vectors in l(2) with all coordinates rational. Eras proved that E is one-dimensional and homeomorphic to its own square x which makes it an important example in dimension theory. Dijkstra and van Mill found topological characterizations of Let M(n)(n+1), n is an element of N, be the n-dimensional Menger continuum in R(n+1), also known as the n-dimensional Sierpinski carpet, and let D be a countable dense subset of M(n)(n+ 1). We consider the topological group H(M(n)(n+1), D) of all autohomeomorphisms of M(n)(n+1) that map D onto itself, equipped with the compact-open topology. We show that under some conditions on D the space H(M(n)(n+1), D) is homeomorphic to E for n is an element of N \ {3}.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [41] REMARKS ON QUASISYMMETRIC RIGIDITY OF SQUARE SIERPINSKI CARPETS
    Rao, Feng
    Wen, Shengyou
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (05)
  • [42] STUDIES ON THE SCALING EXPONENTS OF CONDUCTIVITY FOR SIERPINSKI CARPETS
    YUAN, LY
    TAO, R
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (02): : 401 - 409
  • [43] Investigation of optical diffraction by Sierpinski's carpets
    Alexander, M
    Vasil, R
    FIFTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2001, 4607 : 220 - 226
  • [44] PHASE-TRANSITIONS ON COMPLEX SIERPINSKI CARPETS
    WU, YK
    HU, B
    PHYSICAL REVIEW A, 1987, 35 (03): : 1404 - 1411
  • [46] Resistance in higher-dimensional Sierpinski carpets
    McGillivray, I
    POTENTIAL ANALYSIS, 2002, 16 (03) : 289 - 303
  • [47] The Einstein relation for finitely ramified Sierpinski carpets
    Franz, A
    Schulzky, C
    Hoffmann, KH
    NONLINEARITY, 2001, 14 (05) : 1411 - 1418
  • [48] HIGH-TEMPERATURE EXPANSIONS ON SIERPINSKI CARPETS
    BONNIER, B
    LEROYER, Y
    MEYERS, C
    PHYSICAL REVIEW B, 1989, 40 (13): : 8961 - 8966
  • [49] ANTIFERROMAGNETIC POTTS-MODEL ON SIERPINSKI CARPETS
    BAKCHICH, A
    BENYOUSSEF, A
    BOCCARA, N
    JOURNAL DE PHYSIQUE I, 1992, 2 (01): : 41 - 54
  • [50] Lipschitz equivalence of a class of general Sierpinski carpets
    Wen, Zhixiong
    Zhu, Zhiyong
    Deng, Guotai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 16 - 23