Analyzing the Approximation Error of the Fast Graph Fourier Transform

被引:0
|
作者
Le Magoarou, Luc [1 ]
Tremblay, Nicolas [2 ]
Gribonval, Remi [3 ]
机构
[1] B Com, Rennes, France
[2] Univ Grenoble Alpes, CNRS, GIPSA Lab, Grenoble, France
[3] INRIA Rennes Bretagne Atlantique, Rennes, France
关键词
COMPUTATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The graph Fourier transform (GFT) is in general dense and requires O(n(2)) time to compute and O(n(2)) memory space to store. In this paper, we pursue our previous work on the approximate fast graph Fourier transform (FGFT). The FGFT is computed via a truncated Jacobi algorithm, and is defined as the product of J Givens rotations (very sparse orthogonal matrices). The truncation parameter, J, represents a trade-off between precision of the transform and time of computation (and storage space). We explore further this trade-off and study, on different types of graphs, how is the approximation error distributed along the spectrum.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [31] APPLICATION OF FAST-FOURIER-TRANSFORM TECHNIQUES TO THE DISCRETE-DIPOLE APPROXIMATION
    GOODMAN, JJ
    DRAINE, BT
    FLATAU, PJ
    OPTICS LETTERS, 1991, 16 (15) : 1198 - 1200
  • [32] Fast Incremental Spectral Clustering in Titanate Application via Graph Fourier Transform
    Shu-Juan, Gao
    IEEE ACCESS, 2020, 8 : 57252 - 57259
  • [33] Fast Discrete Fourier Transform Computations Using the Reduced Adder Graph Technique
    Uwe Meyer-Bäse
    Hariharan Natarajan
    Andrew G Dempster
    EURASIP Journal on Advances in Signal Processing, 2007
  • [34] Fast discrete Fourier transform computations using the reduced adder graph technique
    Meyer-Baese, Uwe
    Natarajan, Hariharan
    Dempster, Andrew G.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
  • [35] Enhanced Static Modulated Fourier Transform Spectrometer for Fast Approximation in Field Application
    Cho, Ju Yong
    Oh, Won Chun
    Jang, Won Kweon
    MOLECULES, 2021, 26 (11):
  • [36] SIMPLE FIXED-POINT ERROR BOUND FOR THE FAST FOURIER-TRANSFORM
    KNIGHT, WR
    KAISER, R
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1979, 27 (06): : 615 - 620
  • [37] Error detection of real-number input fast Fourier transform networks
    Chen, S
    Goto, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1996, 79 (05): : 71 - 82
  • [38] Amended Fast Fourier Transform Algorithm Implementation for Error Correction Codes in OFDM
    Kumar, Lohith N.
    Jenitta, J.
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL (I2C2), 2017,
  • [39] USE OF THE FAST FOURIER-TRANSFORM METHOD FOR ANALYZING LINEAR AND EQUISPACED FIZEAU FRINGES
    LAI, GM
    YATAGAI, T
    APPLIED OPTICS, 1994, 33 (25): : 5935 - 5940
  • [40] The fast Fourier transform and fast wavelet transform for patterns on the torus
    Bergmann, Ronny
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (01) : 39 - 51