Analyzing the Approximation Error of the Fast Graph Fourier Transform

被引:0
|
作者
Le Magoarou, Luc [1 ]
Tremblay, Nicolas [2 ]
Gribonval, Remi [3 ]
机构
[1] B Com, Rennes, France
[2] Univ Grenoble Alpes, CNRS, GIPSA Lab, Grenoble, France
[3] INRIA Rennes Bretagne Atlantique, Rennes, France
关键词
COMPUTATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The graph Fourier transform (GFT) is in general dense and requires O(n(2)) time to compute and O(n(2)) memory space to store. In this paper, we pursue our previous work on the approximate fast graph Fourier transform (FGFT). The FGFT is computed via a truncated Jacobi algorithm, and is defined as the product of J Givens rotations (very sparse orthogonal matrices). The truncation parameter, J, represents a trade-off between precision of the transform and time of computation (and storage space). We explore further this trade-off and study, on different types of graphs, how is the approximation error distributed along the spectrum.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [21] Neural Network Approximation of Graph Fourier Transform for Sparse Sampling of Networked Dynamics
    Pagani, Alessio
    Wei, Zhuangkun
    Silva, Ricardo
    Guo, Weisi
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2022, 22 (01)
  • [22] ERROR COMPUTATION ANALYSIS METHOD IN FAST FOURIER-TRANSFORM ALGORITHMS
    VLASENKO, VA
    LAPPA, YM
    RADIOTEKHNIKA I ELEKTRONIKA, 1986, 31 (07): : 1348 - 1351
  • [23] Accuracy of the discrete Fourier transform and the fast Fourier transform
    Schatzman, JC
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05): : 1150 - 1166
  • [24] The Fast Fourier transform
    Oberst, Ulrich
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (02) : 496 - 540
  • [25] Redundant Graph Fourier Transform
    Zheng, Xianwei
    Tang, Yuanyan
    Zhou, Jiantao
    Yang, Lina
    Yuan, Haoliang
    Wang, Yulong
    Li, Chunli
    2015 IEEE 2ND INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2015, : 406 - 409
  • [26] Fourier Analysis and the Fast Fourier Transform
    Salvat-Pujol, Francesc
    OPTICA PURA Y APLICADA, 2008, 41 (01): : 31 - 41
  • [27] A WINDOWED GRAPH FOURIER TRANSFORM
    Shuman, David I.
    Ricaud, Benjamin
    Vandergheynst, Pierre
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 133 - 136
  • [28] The minimality of mean square error in chirp approximation using fractional fourier series and fractional fourier transform
    Bafakeeh, Omar T.
    Yasir, Muhammad
    Raza, Ali
    Khan, Sami Ullah
    Kumar, R. Naveen
    Khan, M. Ijaz
    Almaleki, Deyab A.
    Ben Khedher, Nidhal
    Eldin, Sayed M.
    Galal, Ahmed M.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [29] The minimality of mean square error in chirp approximation using fractional fourier series and fractional fourier transform
    Omar T. Bafakeeh
    Muhammad Yasir
    Ali Raza
    Sami Ullah Khan
    R. Naveen Kumar
    M. Ijaz Khan
    Deyab A. Almaleki
    Nidhal Ben Khedher
    Sayed M. Eldin
    Ahmed M. Galal
    Scientific Reports, 12
  • [30] Graph Analysis Using Fast Fourier Transform Applied on Grayscale Bitmap Images
    Baszuro, Pawel
    Swacha, Jakub
    INFORMATION, 2021, 12 (11)