Combustion of aluminum particles in a high-temperature furnace under various O2/CO2/H2O atmospheres

被引:16
|
作者
Zhou, Yunan [1 ]
Liu, Jianzhong [1 ]
Li, Heping [2 ]
Yuan, Jifei [1 ]
Zhou, Junhu [1 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[2] Hangzhou Dianzi Univ, Inst Energy Studies, Hangzhou 310018, Peoples R China
关键词
Aluminum particles; Dynamic combustion experimental system; Combustion efficiency; Condensed phase products; Agglomeration; AGGLOMERATION;
D O I
10.1007/s10973-019-08391-6
中图分类号
O414.1 [热力学];
学科分类号
摘要
The study focusing on the combustion of flowing aluminum particles and the properties of condensed phase products has important guiding significance for the practical application of aluminum-based propellants. Based upon an in-house built dynamic combustion experimental system, the dynamic combustion process of aluminum particles and the properties of condensed phase products under different atmospheres were studied in detail. The microstructure, size distribution and active aluminum content of samples were analyzed by field emission scanning electron microscopy, laser particle analyzer and inductively coupled plasma atomic emission spectroscopy. By monitoring the temperature distribution at different points in the furnace, the heat release of the samples at different positions is approximated, and the combustion efficiency is calculated. In the atmosphere containing CO2, the maximum combustion efficiency can reach the value of 94.41%, followed by that in H2O atmosphere, which had the value of 81.19%. Finally, under the N-2 containing atmosphere, the combustion is the weakest, and has the value of only 53.91%, confirming that the combustion followed the following descending order: CO2 > H2O > N-2. The condensed phase products were mainly composed of agglomerates formed by the aggregation of particles and alumina smoke. It is well known that the reaction of the sample in the furnace not only follows the melt-dispersion mechanism, but also the diffusion mechanism. The high-speed camera captured four typical combustion forms of aluminum particles during flow, which are stable combustion, release of alumina smoke, crushing and extinction. The average burning time of four stages were studied. The two reaction mechanisms occurring under the same reaction conditions are determined by the nature of aluminum particles themselves.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条
  • [21] Comparison of the Reburning Chemistry in O2/N2, O2/CO2, and O2/H2O Atmospheres
    He, Yizhuo
    Luo, Jianghui
    Li, Yangguang
    Jia, Huiqiao
    Wang, Feng
    Zou, Chun
    Zheng, Chuguang
    ENERGY & FUELS, 2017, 31 (10) : 11404 - 11412
  • [22] Comparison of the characteristics and mechanism of CO formation in O2/N2, O2/CO2 and O2/H2O atmospheres
    He, Yizhuo
    Zou, Chun
    Song, Yu
    Luo, Jianghui
    Jia, Huiqiao
    Chen, Wuzhong
    Zheng, Junmei
    Zheng, Chuguang
    ENERGY, 2017, 141 : 1429 - 1438
  • [23] HIGH-TEMPERATURE RAMAN-SPECTRA OF CO2 AND H2O FOR COMBUSTION DIAGNOSTICS
    STEPHENSON, DA
    APPLIED SPECTROSCOPY, 1981, 35 (06) : 582 - 584
  • [24] Experimental investigation of single wood particle combustion in air and different O2/CO2/H2O atmospheres
    Mack, A.
    Maier, J.
    Scheffknecht, G.
    FUEL, 2023, 340
  • [25] Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels
    Huenert, D.
    Kranzmann, A.
    CORROSION SCIENCE, 2011, 53 (06) : 2306 - 2317
  • [26] A comparative study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O
    Tu, Yaojie
    Yang, Wenming
    Siah, Keng Boon
    Prabakaran, Subbaiah
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 1473 - 1478
  • [27] Effect of H2O on the combustion characteristics and interactions of blended coals in O2/H2O/CO2 atmosphere
    Ma, Lun
    Chen, Xinke
    Yu, Shenghui
    Fang, Qingyan
    Zhang, Cheng
    Chen, Gang
    JOURNAL OF THE ENERGY INSTITUTE, 2021, 94 : 222 - 232
  • [28] NO Emission Characteristics of Pulverized Coal Combustion in O2/N2 and O2/H2O Atmospheres in a Drop-Tube Furnace
    Zhang, Liang
    Fan, Jun
    Wang, Changlin
    Yuan, Jiaqi
    Hao, Cen
    Cao, Shiying
    MATERIALS, 2024, 17 (20)
  • [29] Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres
    Cruz, Glauber
    Crnkovic, Paula Manoel
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 123 (02) : 1003 - 1011
  • [30] Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres
    Glauber Cruz
    Paula Manoel Crnkovic
    Journal of Thermal Analysis and Calorimetry, 2016, 123 : 1003 - 1011