Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres

被引:32
|
作者
Cruz, Glauber [1 ]
Crnkovic, Paula Manoel [1 ]
机构
[1] Univ Sao Paulo, Engn Sch Sao Carlos, Dept Mech Engn, Thermal Engn & Fluids Lab, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Activation energy; Biomasses; Kinetic method; Thermal analysis; THERMAL-DECOMPOSITION KINETICS; ENTRAINED FLOW REACTOR; OXY-FUEL COMBUSTION; ACTIVATION-ENERGY; THERMOGRAVIMETRIC ANALYSIS; COAL IGNITION; PYROLYSIS; BAGASSE; COMPUTATIONS; ENVIRONMENT;
D O I
10.1007/s10973-015-4908-2
中图分类号
O414.1 [热力学];
学科分类号
摘要
Isoconversional kinetic method (model-free kinetics) was used in this study to determine the activation energies (E (a)) of the combustion process of five different biomass samples, namely pine sawdust, sugarcane bagasse, coffee husk, rice husk and tucum seeds, widely available in Brazil. Two different atmospheres with 20 % O-2:N-2/O-2 (conventional combustion) and CO2/O-2 (typical oxy-fuel combustion) were studied. Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves were used to obtain experimental data on the thermal degradation behavior of the biomasses, and the activation energy values were obtained for hemicellulose, cellulose and residual lignin separately. The results show that the E (a) obtained for N-2/O-2 ranged from 68 to 236 kJ mol(-1) for hemicellulose, 119 to 209 kJ mol(-1) for cellulose and 87 to 205 kJ mol(-1) for residual lignin, depending on the type of biomass. Under CO2/O-2 atmosphere, E (a) showed decreases, in average, 35 % for hemicellulose and 26 % for cellulose, in comparison with N-2/O-2 atmosphere. However, a 6 % increase was observed for the residual lignin. These changes can be understood by differences between CO2 and N-2 gas properties. However, the results show that the variation in the E (a) is more dependent on the type of biomass than on the atmosphere at which the combustion takes place.
引用
收藏
页码:1003 / 1011
页数:9
相关论文
共 50 条
  • [1] Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres
    Glauber Cruz
    Paula Manoel Crnkovic
    [J]. Journal of Thermal Analysis and Calorimetry, 2016, 123 : 1003 - 1011
  • [2] Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres
    Diez, Luis I.
    Garcia-Mariaca, Alexander
    Canalis, Paula
    Llera, Eva
    [J]. ENERGY, 2023, 284
  • [3] Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres
    Zhang, Xiaoyu
    Zhu, Shujun
    Zhu, Jianguo
    Liu, Yuhua
    Zhang, Jiahang
    Hui, Jicheng
    Ding, Hongliang
    Cao, Xiaoyang
    Lyu, Qinggang
    [J]. ENERGY, 2023, 274
  • [4] Experimental Investigation and Comparison of Pulverized Coal Combustion in CO2/O2− and N2/O2−Atmospheres
    Johannes Hees
    Diego Zabrodiec
    Anna Massmeyer
    Martin Habermehl
    Reinhold Kneer
    [J]. Flow, Turbulence and Combustion, 2016, 96 : 417 - 431
  • [5] Co-Combustion Characteristics and Kinetic Analyses of Biomass Briquette and Municipal Solid Waste in N2/O2 and CO2/O2 Atmospheres
    Xing, Xianjun
    Li, Yongling
    Xing, Yongqiang
    Xu, Baojie
    Fan, Fangyu
    Zhang, Xuefei
    Xing, Jishou
    [J]. BIORESOURCES, 2017, 12 (01): : 1317 - 1334
  • [6] CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres
    Tu, Yaojie
    Xu, Mingchen
    Zhou, Dezhi
    Wang, Qingxiang
    Yang, Wenming
    Liu, Hao
    [J]. APPLIED ENERGY, 2019, 240 : 1003 - 1013
  • [7] Simulation of Soot Formation in Pulverized Coal Combustion under O2/N2 and O2/CO2 Atmospheres
    Zheng, Jianxiang
    Du, Mengxia
    Xiao, Zuxin
    Zhu, Xiuli
    [J]. ACS OMEGA, 2024, 9 (20): : 22051 - 22064
  • [8] Thermogravimetric analyses of combustion of lignocellulosic materials in N2/O2 and CO2/O2 atmospheres
    Lai, ZhiYi
    Ma, XiaoQian
    Tang, YuTing
    Lin, Hai
    Chen, Yong
    [J]. BIORESOURCE TECHNOLOGY, 2012, 107 : 444 - 450
  • [9] Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres
    Li, Lin
    Duan, Lunbo
    Tong, Shuai
    Anthony, Edward John
    [J]. FUEL PROCESSING TECHNOLOGY, 2019, 186 : 8 - 17
  • [10] Effect of H2O on Preheating Combustion Characteristics in O2/CO2 and O2/N2 Atmospheres
    Pan, Fei
    Zhu, Jianguo
    Liu, Jingzhang
    Liu, Yuhua
    [J]. JOURNAL OF THERMAL SCIENCE, 2023, 32 (06) : 2235 - 2242