On the eigenvalue problem involving the weighted p-Laplacian in radially symmetric domains

被引:3
|
作者
Drabek, Pavel [1 ]
Ho, Ky [2 ]
Sarkar, Abhishek [3 ]
机构
[1] Univ West Bohemia, Dept Math, Univ 8, Plzen 30614, Czech Republic
[2] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[3] Univ West Bohemia, NTIS, Tech 8, Plzen 30614, Czech Republic
关键词
The weighted p-Laplacian; The first eigenvalue; Exterior domain; Regularity; Asymptotic behavior; Maximum principles; Variational method; DEGENERATE ELLIPTIC-EQUATIONS; STURM-LIOUVILLE PROBLEM; UNBOUNDED-DOMAINS; REGULARITY; PRINCIPLE;
D O I
10.1016/j.jmaa.2018.08.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the following eigenvalue problem {-div (L(x) vertical bar del u vertical bar(p-2)del u) = lambda K(x)vertical bar u vertical bar(p-2)u in A(R1)(R2), u = 0 on partial derivative A(R1)(R2), where A(R1)(R2) := {x is an element of R-N : R1 < vertical bar x vertical bar < R-2} (0 < R-1 < R-2 <= infinity), lambda > 0 is a parameter, the weights L and K are measurable with L positive a.e. in A(R1)(R2) and K possibly sign-changing in A(R1)(R2). We prove the existence of the first eigenpair and discuss the regularity and positiveness of eigenfunctions. The asymptotic estimates for u(x) and del u(x) as vertical bar x vertical bar -> R-1(+) or R-2(-) are also investigated. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:716 / 756
页数:41
相关论文
共 50 条
  • [31] Eigenvalue problem for p-Laplacian with mixed boundary conditions
    Li G.
    Liu H.
    Cheng B.
    [J]. Mathematical Sciences, 2013, 7 (1)
  • [32] EXISTENCE AND UNIQUENESS FOR A p-LAPLACIAN NONLINEAR EIGENVALUE PROBLEM
    Franzina, Giovanni
    Lamberti, Pier Domenico
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [33] SOME RESULTS CONCERNING THE EIGENVALUE PROBLEM FOR THE P-LAPLACIAN
    BHATTACHARYA, T
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1990, 14 (02): : 325 - 343
  • [34] Variational eigenvalues of degenerate eigenvalue problems for the weighted p-Laplacian
    Lê, A
    Schmitt, K
    [J]. ADVANCED NONLINEAR STUDIES, 2005, 5 (04) : 573 - 585
  • [35] First Eigenvalue of Weighted p-Laplacian Under Cotton Flow
    Saha, Apurba
    Azami, Shahroud
    Hui, Shyamal Kumar
    [J]. FILOMAT, 2021, 35 (09) : 2919 - 2926
  • [36] Eigenvalue problem for finite difference equations with p-Laplacian
    Yang Y.
    Meng F.
    [J]. Yang, Y. (yitaoyangqf@163.com), 2012, Springer Verlag (40) : 319 - 340
  • [37] Eigenvalue problem for a p-Laplacian equation with trapping potentials
    Gu, Long-Jiang
    Zeng, Xiaoyu
    Zhou, Huan-Song
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 148 : 212 - 227
  • [38] Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Sun, Xueying
    [J]. MILAN JOURNAL OF MATHEMATICS, 2023, 91 (02) : 353 - 373
  • [39] Eigenvalue estimate for a weighted p-Laplacian on compact manifolds with boundary
    Wang, Lin-Feng
    Zhu, Yue-Ping
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2012, 46 (01) : 58 - 61
  • [40] Eigenvalue estimate for a weighted p-Laplacian on compact manifolds with boundary
    Lin-Feng Wang
    Yue-Ping Zhu
    [J]. Functional Analysis and Its Applications, 2012, 46 : 58 - 61