Variational eigenvalues of degenerate eigenvalue problems for the weighted p-Laplacian

被引:0
|
作者
Lê, A
Schmitt, K
机构
[1] Math Sci Res Inst, Berkeley, CA 94720 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
eigenvalue problems; p-Laplacian; weighted Sobolev spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of nondecreasing sequences of positive eigenvalues of the homogeneous degenerate quasilinear eigenvalue problem - div(a(x)vertical bar del u vertical bar(p-2)del u) = lambda b(x) vertical bar u vertical bar(p-2)u, lambda > 0 subject to Dirichlet boundary conditions on a bounded domain Omega. The diffusion coefficient a(x) is a function in L-loc(1)(Omega) and b(x) is a nontrivial function in L-r(Omega) (r depending on a, p and N) and may change sign. We use Ljusternik-Schnirelman theory, minimax theory and the theory of weighted Sobolev spaces to establish our results.
引用
收藏
页码:573 / 585
页数:13
相关论文
共 50 条