Variational eigenvalues of degenerate eigenvalue problems for the weighted p-Laplacian

被引:0
|
作者
Lê, A
Schmitt, K
机构
[1] Math Sci Res Inst, Berkeley, CA 94720 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
eigenvalue problems; p-Laplacian; weighted Sobolev spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of nondecreasing sequences of positive eigenvalues of the homogeneous degenerate quasilinear eigenvalue problem - div(a(x)vertical bar del u vertical bar(p-2)del u) = lambda b(x) vertical bar u vertical bar(p-2)u, lambda > 0 subject to Dirichlet boundary conditions on a bounded domain Omega. The diffusion coefficient a(x) is a function in L-loc(1)(Omega) and b(x) is a nontrivial function in L-r(Omega) (r depending on a, p and N) and may change sign. We use Ljusternik-Schnirelman theory, minimax theory and the theory of weighted Sobolev spaces to establish our results.
引用
收藏
页码:573 / 585
页数:13
相关论文
共 50 条
  • [31] DISTRIBUTION OF THE PRUFER ANGLE IN p-LAPLACIAN EIGENVALUE PROBLEMS
    Cheng, Yan-Hsiou
    Law, Chun-Kong
    Luo, Yu-Chen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [32] Eigenvalue estimate for a weighted p-Laplacian on compact manifolds with boundary
    Lin-Feng Wang
    Yue-Ping Zhu
    Functional Analysis and Its Applications, 2012, 46 : 58 - 61
  • [33] GENERALIZED PRUFER ANGLE AND VARIATIONAL METHODS FOR p-LAPLACIAN EIGENVALUE PROBLEMS ON THE HALF-LINE
    Binding, Paul
    Browne, Patrick J.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 : 565 - 579
  • [34] THE EIGENVALUE PROBLEM FOR A CLASS OF DEGENERATE OPERATORS RELATED TO THE NORMALIZED p-LAPLACIAN
    Liu, Fang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05): : 2701 - 2720
  • [35] Extremal p-Laplacian eigenvalues
    Antunes, Pedro R. S.
    NONLINEARITY, 2019, 32 (12) : 5087 - 5109
  • [36] On the perturbation of eigenvalues for the p-Laplacian
    Melián, JG
    De Lis, JS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (10): : 893 - 898
  • [37] Mixed eigenvalues of p-Laplacian
    Mu-Fa Chen
    Lingdi Wang
    Yuhui Zhang
    Frontiers of Mathematics in China, 2015, 10 : 249 - 274
  • [38] On variational eigenvalues of the p-Laplacian which are not of Ljusternik-Schnirelmann type
    Drabek, Pavel
    Takac, Peter
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 625 - 649
  • [39] Mixed eigenvalues of p-Laplacian
    Chen, Mu-Fa
    Wang, Lingdi
    Zhang, Yuhui
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) : 249 - 274
  • [40] On the eigenvalues of the p-Laplacian with varying p
    Huang, YX
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) : 3347 - 3354