Limit Behaviour of a Singular Perturbation Problem for the Biharmonic Operator

被引:4
|
作者
Dipierro, Serena [1 ]
Karakhanyan, Aram L. [2 ]
Valdinoci, Enrico [1 ]
机构
[1] Univ Western Australia, Dept Math & Stat, 35 Stirling Hwy, Crawley, WA 6009, Australia
[2] Univ Edinburgh, Sch Math, Peter Tait Guthrie Rd, Edinburgh EH9 3FD, Midlothian, Scotland
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2019年 / 80卷 / 03期
基金
澳大利亚研究理事会;
关键词
Biharmonic operator; Singular perturbation problems; Monotonicity formula; FREE-BOUNDARY PROBLEM; 2-OBSTACLE PROBLEM; OBSTACLE PROBLEM; REGULARITY; EXISTENCE; POINTS;
D O I
10.1007/s00245-019-09598-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study here a singular perturbation problem of biLaplacian type, which can be seen as the biharmonic counterpart of classical combustion models. We provide different results, that include the convergence to a free boundary problem driven by a biharmonic operator, as introduced in Dipierro et al. (arXiv:1808.07696, 2018), and amonotonicity formula in the plane. For the latter result, an important tool is provided by an integral identity that is satisfied by solutions of the singular perturbation problem. We also investigate the quadratic behaviour of solutions near the zero level set, at least for small values of the perturbation parameter. Some counterexamples to the uniform regularity are also provided if one does not impose some structural assumptions on the forcing term.
引用
收藏
页码:679 / 713
页数:35
相关论文
共 50 条
  • [21] On a conjecture for an overdetermined problem for the biharmonic operator
    Goyal, V.
    Schaefer, P. W.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (04) : 421 - 424
  • [22] A Spectral Sobolev Problem for the Biharmonic Operator
    Savin, A. Yu.
    Semenova, E. N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) : 950 - 955
  • [23] The Gel’fand Problem for the Biharmonic Operator
    Louis Dupaigne
    Marius Ghergu
    Olivier Goubet
    Guillaume Warnault
    Archive for Rational Mechanics and Analysis, 2013, 208 : 725 - 752
  • [24] The Gel'fand Problem for the Biharmonic Operator
    Dupaigne, Louis
    Ghergu, Marius
    Goubet, Olivier
    Warnault, Guillaume
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (03) : 725 - 752
  • [25] A SINGULAR PERTURBATION PROBLEM
    CHOW, YS
    GRENANDER, U
    JOURNAL OF INTEGRAL EQUATIONS, 1985, 9 (01): : 63 - 73
  • [26] Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem
    Caffarelli, LA
    Lederman, C
    Wolanski, N
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1997, 46 (03) : 719 - 740
  • [27] ON THE PROBLEM OF SINGULAR LIMIT
    Caggio, M.
    Ducomet, B.
    Necasova, S.
    Tang, T.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2023, 2023, : 6 - 12
  • [28] SINGULAR PERTURBATION OF LIMIT AND BIFURCATION POINTS
    LANGE, CG
    WEINITSCHKE, HJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (06): : T747 - T749
  • [29] Singular potential biharmonic problem with fixed energy
    Jung, Tacksun
    Choi, Q-Heung
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 18
  • [30] On a p(x)-biharmonic problem with singular weights
    Kefi, Khaled
    Radulescu, Vicentiu D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (04):