A Spectral Sobolev Problem for the Biharmonic Operator

被引:1
|
作者
Savin, A. Yu. [1 ]
Semenova, E. N. [1 ]
机构
[1] RUDN Univ, Peoples Friendship Univ Russia, Moscow 117198, Russia
基金
俄罗斯基础研究基金会;
关键词
biharmonic operator; Friedrichs extension; Sobolev problem; coboundary operator;
D O I
10.1134/S1995080223030290
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the biharmonic operator on the 3-dimensional torus with the domain given by functions vanishing on a circle inside the torus. We describe explicitly the adjoint operator and the Friedrichs extension. More precisely, we show that the Friedrichs extension is a Sobolev problem with boundary and coboundary conditions along the circle. Bibliography: 27 items.
引用
收藏
页码:950 / 955
页数:6
相关论文
共 50 条
  • [1] A Spectral Sobolev Problem for the Biharmonic Operator
    A. Yu. Savin
    E. N. Semenova
    Lobachevskii Journal of Mathematics, 2023, 44 : 950 - 955
  • [2] Stability for an inverse spectral problem of the biharmonic Schrodinger operator
    Yao, Xiaohua
    Zhao, Yue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 377 : 694 - 711
  • [3] A singularly perturbed spectral problem for a biharmonic operator with Neumann conditions
    A. S. Lavrenyuk
    Ukrainian Mathematical Journal, 1999, 51 (11) : 1656 - 1667
  • [4] A BIFURCATION PROBLEM FOR THE BIHARMONIC OPERATOR
    Jung, Tacksun
    Choi, Q-Heung
    KOREAN JOURNAL OF MATHEMATICS, 2012, 20 (02): : 263 - 271
  • [5] Hardy–Sobolev inequalities for the biharmonic operator with remainder terms
    Tommaso Passalacqua
    Bernhard Ruf
    Journal of Fixed Point Theory and Applications, 2014, 15 : 405 - 431
  • [6] Limiting Sobolev inequalities and the 1-biharmonic operator
    Parini, Enea
    Ruf, Bernhard
    Tarsi, Cristina
    ADVANCES IN NONLINEAR ANALYSIS, 2014, 3 : S19 - S36
  • [7] Upper Spectral Bound of Biharmonic Operator Eigenvalue Problem by Bicubic Hermite Element
    Ren, Shixian
    Yang, Yidu
    Bi, Hai
    INTELLIGENT SYSTEM AND APPLIED MATERIAL, PTS 1 AND 2, 2012, 466-467 : 430 - 434
  • [8] Sobolev regularity of the second biharmonic problem on a rectangle
    János Karátson
    Acta Mathematica Hungarica, 2005, 109 : 255 - 259
  • [9] Sobolev regularity of the second biharmonic problem on a rectangle
    Karátson, J
    ACTA MATHEMATICA HUNGARICA, 2005, 109 (03) : 255 - 259
  • [10] An optimization problem for the Biharmonic equation with Sobolev conditions
    Buttazzo G.
    Nazarov S.A.
    Journal of Mathematical Sciences, 2011, 176 (6) : 786 - 796