A Spectral Sobolev Problem for the Biharmonic Operator

被引:2
|
作者
Savin, A. Yu. [1 ]
Semenova, E. N. [1 ]
机构
[1] RUDN Univ, Peoples Friendship Univ Russia, Moscow 117198, Russia
基金
俄罗斯基础研究基金会;
关键词
biharmonic operator; Friedrichs extension; Sobolev problem; coboundary operator;
D O I
10.1134/S1995080223030290
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the biharmonic operator on the 3-dimensional torus with the domain given by functions vanishing on a circle inside the torus. We describe explicitly the adjoint operator and the Friedrichs extension. More precisely, we show that the Friedrichs extension is a Sobolev problem with boundary and coboundary conditions along the circle. Bibliography: 27 items.
引用
收藏
页码:950 / 955
页数:6
相关论文
共 50 条
  • [21] THE 2-OBSTACLE PROBLEM FOR THE BIHARMONIC OPERATOR
    CAFFARELLI, LA
    FRIEDMAN, A
    TORELLI, A
    PACIFIC JOURNAL OF MATHEMATICS, 1982, 103 (02) : 325 - 335
  • [22] ON THE TANGENTIAL OBLIQUE DERIVATIVE PROBLEM FOR THE BIHARMONIC OPERATOR
    Popivanov, Petar R.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2009, 62 (04): : 427 - 432
  • [23] The eigenvalue problem for the 1-biharmonic operator
    Parini, Enea
    Ruf, Bernhard
    Tarsi, Cristina
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2014, 13 (02) : 307 - 332
  • [24] An overdetermined problem of the biharmonic operator on Riemannian manifolds
    Fan Chen
    Qin Huang
    Qihua Ruan
    Boundary Value Problems, 2023
  • [25] Inverse backscattering problem for perturbations of biharmonic operator
    Tyni, Teemu
    Harju, Markus
    INVERSE PROBLEMS, 2017, 33 (10)
  • [26] An overdetermined problem of the biharmonic operator on Riemannian manifolds
    Chen, Fan
    Huang, Qin
    Ruan, Qihua
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [27] Boundary Value Problem of the Operator ⊕k Related to the Biharmonic Operator and the Diamond Operator
    Bunpog, Chalermpon
    MATHEMATICS, 2018, 6 (07):
  • [28] WELL-CONDITIONED SPECTRAL DISCRETIZATIONS OF THE BIHARMONIC OPERATOR
    AWAN, MA
    PHILLIPS, TN
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 48 (3-4) : 179 - 189
  • [29] Limit Behaviour of a Singular Perturbation Problem for the Biharmonic Operator
    Dipierro, Serena
    Karakhanyan, Aram L.
    Valdinoci, Enrico
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 679 - 713
  • [30] Limit Behaviour of a Singular Perturbation Problem for the Biharmonic Operator
    Serena Dipierro
    Aram L. Karakhanyan
    Enrico Valdinoci
    Applied Mathematics & Optimization, 2019, 80 : 679 - 713