Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator

被引:4
|
作者
Chen, Lanxin [1 ]
Zhang, Junxian [1 ]
Saleem, Muhammad Shoaib [2 ]
Ahmed, Imran [3 ]
Waheed, Shumaila [2 ]
Pan, Lishuang [1 ]
机构
[1] Shijiazhuang Univ, Sci Coll, Shijiazhuang 050035, Hebei, Peoples R China
[2] Univ Okara, Dept Math, Okara, Pakistan
[3] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore, Pakistan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 06期
关键词
Capoto-Fabrizio fractional operator; h-convexity; Hermite-Hadamard type inequality; DIFFUSION; HADAMARD; MEMORY;
D O I
10.3934/math.2021374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study h convex functions and present some inequalities of Caputo-Fabrizio fractional operator. Precisely speaking, we presented Hermite-Hadamard type inequality via h convex function involving Caputo-Fabrizio fractional operator. We also presented some new inequalities for the class of h convex functions. Moreover, we also presented some applications of our results in special means which play a significant role in applied and pure mathematics, especially the accuracy of a results can be confirmed by through special means.
引用
收藏
页码:6377 / 6389
页数:13
相关论文
共 50 条
  • [31] Caputo-Fabrizio fractional Hermite-Hadamard type and associated results for strongly convex functions
    Nwaeze, Eze R.
    Kermausuor, Seth
    JOURNAL OF ANALYSIS, 2021, 29 (04): : 1351 - 1365
  • [32] Jensen–Mercer Type Inequalities for Operator h-Convex Functions
    Mostafa Abbasi
    Ali Morassaei
    Farzollah Mirzapour
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2441 - 2462
  • [33] On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator
    Jassim, Hassan Kamil
    Hussain, Mohammed Abed Shareef
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (01): : 58 - 66
  • [34] Inequalities presenting error bounds for trapezoidal formula using Caputo-Fabrizio integrals via convex functions with graphical depiction
    Nosheen, Ammara
    Tariq, Maria
    Khan, Khuram Ali
    El-Morsy, Salwa
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 34 (01): : 85 - 98
  • [35] OSTROWSKI-TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR r -TIMES DIFFERENTIABLE h-CONVEX FUNCTIONS
    Hussain, Sabir
    Azhar, Faiza
    Latif, Muhammad Amer
    Khalid, Javariya
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2021, 53 (07): : 459 - 474
  • [36] ON BURGER EQUATION WITH CAPUTO-FABRIZIO OPERATOR
    Phuong, Nguyen Duc
    Hoan, Luu Vu Cam
    Tuan, Nguyen Huy
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (08) : 1693 - 1708
  • [37] A critical analysis of the Caputo-Fabrizio operator
    Ortigueira, Manuel D.
    Tenreiro Machado, J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 608 - 611
  • [38] Weighted fractional inequalities for new conditions on h-convex functions
    Benaissa, Bouharket
    Azzouz, Noureddine
    Budak, Huseyin
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [39] Polya-Szego Integral Inequalities Using the Caputo-Fabrizio Approach
    Nale, Asha B.
    Chinchane, Vaijanath L.
    Panchal, Satish K.
    Chesneau, Christophe
    AXIOMS, 2022, 11 (02)
  • [40] Analysis of dengue model with fractal-fractional Caputo-Fabrizio operator
    Fatmawati
    Altaf Khan, Muhammad
    Alfiniyah, Cicik
    Alzahrani, Ebraheem
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)