Jensen–Mercer Type Inequalities for Operator h-Convex Functions

被引:0
|
作者
Mostafa Abbasi
Ali Morassaei
Farzollah Mirzapour
机构
[1] University of Zanjan,Department of Mathematics, Faculty of Sciences
关键词
-Convex function; Jensen–Mercer inequality; Operator inequality; Hilbert space; 47A63; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we state some characterizations of h-convex function defined on a convex set in a linear space. By doing so, we extend the Jensen–Mercer inequality for h-convex function. We present the concept of operator h-convex functions and give some operator versions of Jensen and Jensen–Mercer type inequalities for some classes of operator h-convex functions and unital positive linear maps. Finally, we introduce the complementary inequality of Jensen’s inequality for h-convex functions.
引用
收藏
页码:2441 / 2462
页数:21
相关论文
共 50 条
  • [1] Jensen-Mercer Type Inequalities for Operator h-Convex Functions
    Abbasi, Mostafa
    Morassaei, Ali
    Mirzapour, Farzollah
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2441 - 2462
  • [2] Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function
    Ma, Fangfang
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 784 - 803
  • [3] On operator inequalities of Jensen type for convex functions
    Anjidani, Ehsan
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (07): : 1493 - 1502
  • [4] Generalized Fractal Jensen-Mercer and Hermite-Mercer type inequalities via h-convex functions involving Mittag-Leffler kernel
    Xu, Peng
    Butt, Saad Ihsan
    Yousaf, Saba
    Aslam, Adnan
    Zia, Tariq Javed
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (06) : 4837 - 4846
  • [5] FURTHER JENSEN--MERCER'S TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Mohebbi, Faezeh Parvin
    Hassani, Mahmoud
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    Furuichi, Shigeru
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 719 - 737
  • [6] Operator Jensen's Type Inequalities for Convex Functions
    Hosseini, M. Shah
    Moradi, H. R.
    Moosavi, B.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (02)
  • [7] New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions
    Dafang Zhao
    Tianqing An
    Guoju Ye
    Wei Liu
    [J]. Journal of Inequalities and Applications, 2018
  • [8] Hermite-Jensen-Mercer-Type Inequalities via Caputo-Fabrizio Fractional Integral for h-Convex Function
    Vivas-Cortez, Miguel
    Saleem, Muhammad Shoaib
    Sajid, Sana
    Zahoor, Muhammad Sajid
    Kashuri, Artion
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [9] Jensen–Mercer Operator Inequalities Involving Superquadratic Functions
    E. Anjidani
    [J]. Mediterranean Journal of Mathematics, 2018, 15
  • [10] Further Hermite-Hadamard Type Inequalities Involving Operator h-Convex Functions
    Raissouli, Mustapha
    Tarik, Lahcen
    Chergui, Mohamed
    El Wahbi, Bouazza
    [J]. FILOMAT, 2022, 36 (18) : 6333 - 6346