FURTHER JENSEN--MERCER'S TYPE INEQUALITIES FOR CONVEX FUNCTIONS

被引:0
|
作者
Mohebbi, Faezeh Parvin [1 ]
Hassani, Mahmoud [1 ]
Omidvar, Mohsen Erfanian [1 ]
Moradi, Hamid Reza [1 ]
Furuichi, Shigeru [2 ,3 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Dept Math, Mashhad, Iran
[2] Nihon Univ, Coll Humanities & Sci, Dept Informat Sci, Setagaya Ku, Tokyo, Japan
[3] SIMATS Thandalam, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamilnadu, India
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 02期
关键词
Jensen-Mercer inequality; convex function; continuous functional calculus;
D O I
10.7153/jmi-2024-18-39
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article considers the class of convex functions and derives further Jensen-Mercer'stype inequalities. The obtained results improve and generalize some known inequalities. A reverse of Jesnen-Mercer's inequality for scalars and operators is also given. As an application, we provide a new and non -trivial inequality related to the Wigner-Yanase-Dyson function and the logarithmic mean.
引用
收藏
页码:719 / 737
页数:19
相关论文
共 50 条
  • [1] Jensen–Mercer Type Inequalities for Operator h-Convex Functions
    Mostafa Abbasi
    Ali Morassaei
    Farzollah Mirzapour
    [J]. Bulletin of the Iranian Mathematical Society, 2022, 48 : 2441 - 2462
  • [2] Jensen-Mercer Type Inequalities for Operator h-Convex Functions
    Abbasi, Mostafa
    Morassaei, Ali
    Mirzapour, Farzollah
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2441 - 2462
  • [3] Generalized Jensen and Jensen-Mercer inequalities for strongly convex functions with applications
    Bradanovic, Slavica Ivelic
    Lovricevic, Neda
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [4] Refinements of Jensen's inequality of Mercer's type for operator convex functions
    Matkovic, A.
    Pecaric, J.
    Peric, I.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (01): : 113 - 126
  • [5] Operator Jensen's Type Inequalities for Convex Functions
    Hosseini, M. Shah
    Moradi, H. R.
    Moosavi, B.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (02)
  • [6] On operator inequalities of Jensen type for convex functions
    Anjidani, Ehsan
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (07): : 1493 - 1502
  • [7] Jensen–Mercer inequality for GA-convex functions and some related inequalities
    İmdat İşcan
    [J]. Journal of Inequalities and Applications, 2020
  • [8] GENERALIZED INEQUALITIES OF THE MERCER TYPE FOR STRONGLY CONVEX FUNCTIONS
    Alam, Fayaz
    Iqbal, Sajid
    Khan, Muhammad Adil
    Nwaeze, Eze R.
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2023, 14 (01): : 21 - 36
  • [9] Jensen-Mercer and Hermite-Hadamard-Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications
    Fahad, Asfand
    Ayesha
    Wang, Yuanheng
    Butt, Saad Ihsaan
    [J]. MATHEMATICS, 2023, 11 (02)
  • [10] Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function
    Ma, Fangfang
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 784 - 803