Clustering of volcanic ash arising from different fragmentation mechanisms using Kohonen self-organizing maps

被引:16
|
作者
Ersoy, Orkun [1 ]
Aydar, Erkan
Gourgaud, Alain
Artuner, Harun
Bayhan, Hasan
机构
[1] Hacettepe Univ, Dept Geol Engn, TR-06532 Ankara, Turkey
[2] Univ Blaise Pascal, CNRS, UMR 6524, F-63038 Clermont Ferrand, France
[3] Hacettepe Univ, Dept Comp Sci & Engn, TR-06532 Ankara, Turkey
关键词
neural networks; Kohonen self-organizing maps; volcanic ash; Nemrut;
D O I
10.1016/j.cageo.2006.10.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we present the visualization and clustering capabilities of self-organizing maps (SOM) for analyzing high dimensional data. We used SOM because they implement an orderly mapping of a high-dimensional distribution onto a regular low-dimensional grid. We used surface texture parameters of volcanic ash that arose from different fragmentation mechanisms as input data. We found that SOM cluster 13-dimensional data more accurately than conventional statistical classifiers. The component planes constructed by SOM are more successful than statistical tests in determining the distinctive parameters. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:821 / 828
页数:8
相关论文
共 50 条
  • [41] Clustering using adaptive self-organizing maps (ASOM) and applications
    Wang, Y
    Yang, CY
    Mathee, K
    Narasimhan, G
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 944 - 951
  • [42] Extending the Kohonen self-organizing map networks for clustering analysis
    Kiang, MY
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 38 (02) : 161 - 180
  • [43] Clustering XML documents using Self-Organizing Maps for structures
    Hagenbuchner, M.
    Sperduti, A.
    Tsoi, A. C.
    Trentini, F.
    Scarselli, F.
    Gori, M.
    [J]. ADVANCES IN XML INFORMATION RETRIEVAL AND EVALUATION, 2006, 3977 : 481 - 496
  • [44] Clustering of regional HDI data using Self-Organizing Maps
    Ferreira Costa, Jose Alfredo
    Vieira Pinto, Antonio Paulo
    de Andrade, Joao Ribeiro
    de Medeiros, Marcial Guerra
    [J]. 2017 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2017,
  • [45] Using Self-Organizing Maps in Constrained Ensemble Clustering Framework
    Visakh, R.
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 224 - 229
  • [46] Clustering of Delaminations in Composite Rotors Using Self-Organizing Maps
    Amarowicz, Marcin
    Katunin, Andrzej
    [J]. INTELLIGENT SYSTEMS IN TECHNICAL AND MEDICAL DIAGNOSTICS, 2014, 230 : 149 - 159
  • [47] Sensor Signal Clustering with Self-Organizing Maps
    Popovici, Razvan
    Andonie, Razvan
    [J]. 2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [48] Incremental Self-Organizing Maps for Collaborative Clustering
    Maurel, Denis
    Sublime, Jeremie
    Lefebvre, Sylvain
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 497 - 504
  • [49] An unsupervised method of classifying remotely sensed images using Kohonen self-organizing maps and agglomerative hierarchical clustering methods
    Goncalves, M. L.
    Netto, M. L. A.
    Costa, J. A. F.
    Zullo Junior, J.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (11) : 3171 - 3207
  • [50] On the use of self-organizing maps for clustering and visualization
    Flexer, A
    [J]. PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY, 1999, 1704 : 80 - 88