Clustering of volcanic ash arising from different fragmentation mechanisms using Kohonen self-organizing maps

被引:16
|
作者
Ersoy, Orkun [1 ]
Aydar, Erkan
Gourgaud, Alain
Artuner, Harun
Bayhan, Hasan
机构
[1] Hacettepe Univ, Dept Geol Engn, TR-06532 Ankara, Turkey
[2] Univ Blaise Pascal, CNRS, UMR 6524, F-63038 Clermont Ferrand, France
[3] Hacettepe Univ, Dept Comp Sci & Engn, TR-06532 Ankara, Turkey
关键词
neural networks; Kohonen self-organizing maps; volcanic ash; Nemrut;
D O I
10.1016/j.cageo.2006.10.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we present the visualization and clustering capabilities of self-organizing maps (SOM) for analyzing high dimensional data. We used SOM because they implement an orderly mapping of a high-dimensional distribution onto a regular low-dimensional grid. We used surface texture parameters of volcanic ash that arose from different fragmentation mechanisms as input data. We found that SOM cluster 13-dimensional data more accurately than conventional statistical classifiers. The component planes constructed by SOM are more successful than statistical tests in determining the distinctive parameters. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:821 / 828
页数:8
相关论文
共 50 条
  • [21] A Novel Kohonen Self-organizing Maps Using Exponential Decay Average Rate of Change for Color Clustering
    Galutira, Edwin F.
    Fajardo, Arnel C.
    Medina, Ruji P.
    [J]. INTELLIGENT AND INTERACTIVE COMPUTING, 2019, 67 : 23 - 33
  • [22] The use of Kohonen self-organizing maps in process monitoring
    Vermasvuori, M
    Endén, P
    Haavisto, S
    Jämsä-Jounela, SL
    [J]. 2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL III, STUDENT SESSION, PROCEEDINGS, 2002, : 2 - 7
  • [23] Application of kohonen Self-Organizing Maps (SOM) based clustering for the assessment of religious motivation
    Stambuk, Ana
    Stambuk, Nikola
    Konjevoda, Pasko
    [J]. PROCEEDINGS OF THE ITI 2007 29TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2007, : 87 - +
  • [24] Clustering iOS Executable Using Self-Organizing Maps
    Yu, Fang
    Huang, Shin-yin
    Chiou, Li-ching
    Tsaih, Rua-huan
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [25] GENERALIZED CLUSTERING NETWORKS AND KOHONEN SELF-ORGANIZING SCHEME
    PAL, NR
    BEZDEK, JC
    TSAO, ECK
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (04): : 549 - 557
  • [26] A clustering method using hierarchical self-organizing maps
    Endo, M
    Ueno, M
    Tanabe, T
    [J]. JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2002, 32 (1-2): : 105 - 118
  • [27] A Clustering Method Using Hierarchical Self-Organizing Maps
    Masahiro Endo
    Masahiro Ueno
    Takaya Tanabe
    [J]. Journal of VLSI signal processing systems for signal, image and video technology, 2002, 32 : 105 - 118
  • [28] Clustering with a mixture of self-organizing maps
    Wesolkowski, S
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 2363 - 2368
  • [29] SPEECH DISORDER ANALYSIS USING MATCHING PURSUIT AND KOHONEN SELF-ORGANIZING MAPS
    Bartu, Marek
    [J]. NEURAL NETWORK WORLD, 2012, 22 (06) : 519 - 533
  • [30] USING MULTI-KOHONEN SELF-ORGANIZING MAPS FOR MODELING VISUAL PERCEPTION
    Collobert, Michel
    [J]. COMPUTER VISION AND GRAPHICS (ICCVG 2004), 2006, 32 : 1031 - 1036