Dark and bright shock waves on oscillating backgrounds in a discrete nonlinear Schrodinger equation

被引:15
|
作者
Konotop, VV [1 ]
Salerno, M [1 ]
机构
[1] UNIV SALERNO,DEPT THEORET PHYS,I-84100 SALERNO,ITALY
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 03期
关键词
D O I
10.1103/PhysRevE.56.3611
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dark and bright shock waves on top of arbitrary oscillating backgrounds are investigated in a discrete version of the nonlinear Schrodinger equation. The existence of analytical curves in the parameter space corresponding to shock wave formation is established for arbitrary wave numbers k of the background radiation. The analysis is based on the small-amplitude approximation and is confirmed by direct numerical integrations of the system.
引用
收藏
页码:3611 / 3618
页数:8
相关论文
共 50 条
  • [41] Bright solitons of generalized nonlinear Schrodinger equation
    Jasinski, J
    OPTICS COMMUNICATIONS, 1999, 172 (1-6) : 325 - 333
  • [42] Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrodinger equation with δ-potential
    Baskonus, Haci Mehmet
    Sulaiman, Tukur Abdulkadir
    Bulut, Hasan
    Akturk, Tolga
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 115 : 19 - 29
  • [43] OSCILLATING NONLINEAR ACOUSTIC SHOCK WAVES
    Gaididei, Yuri
    Rasmussen, Anders Ronne
    Christiansen, Peter Leth
    Sorensen, Mads Peter
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2016, 5 (03): : 367 - 381
  • [44] Dark and dark-like-bright solitons for a higher-order nonlinear Schrodinger equation in optical fibers
    Jiang, Yan
    Tian, Bo
    EPL, 2013, 102 (01)
  • [45] Symmetries of the discrete nonlinear Schrodinger equation
    Heredero, RH
    Levi, D
    Winternitz, P
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 729 - 737
  • [46] Nonequilibrium discrete nonlinear Schrodinger equation
    Iubini, Stefano
    Lepri, Stefano
    Politi, Antonio
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [47] Discrete nonlinear Schrodinger equation with defects
    Trombettoni, A
    Smerzi, A
    Bishop, AR
    PHYSICAL REVIEW E, 2003, 67 (01): : 166071 - 166071
  • [48] On the integrability of the discrete nonlinear Schrodinger equation
    Levi, D.
    Petrera, M.
    Scimiterna, C.
    EPL, 2008, 84 (01)
  • [49] The fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (08)
  • [50] NONLINEAR WAVES IN NEWTON'S CRADLE AND THE DISCRETE p-SCHRODINGER EQUATION
    James, Guillaume
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11): : 2335 - 2377