Homogenized model of reaction-diffusion in a porous medium

被引:13
|
作者
Pankratov, L
Piatnitskii, A
Rybalko, V
机构
[1] B Verkin Inst Basses Temp, FLINT, Dept Math, UA-61103 Kharkov, Ukraine
[2] Univ Paris 06, Lac Jacques Louis Lions, F-75252 Paris 05, France
[3] Narvik Univ Coll, HiN, N-8505 Narvik, Norway
[4] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 117333, Russia
来源
COMPTES RENDUS MECANIQUE | 2003年 / 331卷 / 04期
关键词
computational solid mechanics; reaction-diffusion equation; homogenised model; memory effect;
D O I
10.1016/S1631-0721(03)00060-3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the initial boundary value problem for the reaction-diffusion equation, partial derivative(t)u(epsilon) - del . (a(epsilon)delu(epsilon)) + g(u(epsilon)) = h(epsilon) in a bounded domain Omega with periodic microstructure F-(epsilon) boolean OR (M) over bar ((epsilon)), where a(epsilon)(x) is of order 1 in F-(epsilon) and kappa(epsilon) in M-(epsilon) with kappa(epsilon) --> 0 as epsilon --> 0. Combining the method of two-scale convergence and the variational homogenization we obtain effective models which depend on the parameter theta = lim(epsilon-->0) kappa(epsilon)/epsilon(2). In the case of strictly positive finite theta the effective problem is nonlocal in time that corresponds to the memory effect. (C) 2003 Academie des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:253 / 258
页数:6
相关论文
共 50 条