Homogenized model of reaction-diffusion in a porous medium

被引:13
|
作者
Pankratov, L
Piatnitskii, A
Rybalko, V
机构
[1] B Verkin Inst Basses Temp, FLINT, Dept Math, UA-61103 Kharkov, Ukraine
[2] Univ Paris 06, Lac Jacques Louis Lions, F-75252 Paris 05, France
[3] Narvik Univ Coll, HiN, N-8505 Narvik, Norway
[4] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 117333, Russia
来源
COMPTES RENDUS MECANIQUE | 2003年 / 331卷 / 04期
关键词
computational solid mechanics; reaction-diffusion equation; homogenised model; memory effect;
D O I
10.1016/S1631-0721(03)00060-3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the initial boundary value problem for the reaction-diffusion equation, partial derivative(t)u(epsilon) - del . (a(epsilon)delu(epsilon)) + g(u(epsilon)) = h(epsilon) in a bounded domain Omega with periodic microstructure F-(epsilon) boolean OR (M) over bar ((epsilon)), where a(epsilon)(x) is of order 1 in F-(epsilon) and kappa(epsilon) in M-(epsilon) with kappa(epsilon) --> 0 as epsilon --> 0. Combining the method of two-scale convergence and the variational homogenization we obtain effective models which depend on the parameter theta = lim(epsilon-->0) kappa(epsilon)/epsilon(2). In the case of strictly positive finite theta the effective problem is nonlocal in time that corresponds to the memory effect. (C) 2003 Academie des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:253 / 258
页数:6
相关论文
共 50 条
  • [41] HOMOGENIZATION OF REACTION-DIFFUSION EQUATIONS IN FRACTURED POROUS MEDIA
    Douanla, Hermann
    Woukeng, Jean Louis
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [42] Effective medium approach for heterogeneous reaction-diffusion media
    Alonso, Sergio
    Baer, Markus
    Kapral, Raymond
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (21):
  • [43] HYBRID SIMULATIONS OF REACTION-DIFFUSION SYSTEMS IN POROUS MEDIA
    Tartakovsky, A. M.
    Tartakovsky, D. M.
    Scheibe, T. D.
    Meakin, P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06): : 2799 - 2816
  • [44] Homogenized Model of Diffusion in Porous Media with Nonlinear Absorption on the Boundary
    M. V. Goncharenko
    L. A. Khil’kova
    Ukrainian Mathematical Journal, 2016, 67 : 1349 - 1366
  • [45] Diffusion of water and oxygen in quartz: reaction-diffusion model
    Doremus, RH
    EARTH AND PLANETARY SCIENCE LETTERS, 1998, 163 (1-4) : 43 - 51
  • [46] A multi-region model for reaction-diffusion process within a porous catalyst pellet
    Li, Hua
    Ye, Mao
    Liu, Zhongmin
    CHEMICAL ENGINEERING SCIENCE, 2016, 147 : 1 - 12
  • [47] Accumulations of T-points in a model for solitary pulses in an excitable reaction-diffusion medium
    Homburg, AJ
    Natiello, MA
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 201 (3-4) : 212 - 229
  • [48] An Analytical Model for Molecular Communication Over a Non-Linear Reaction-Diffusion Medium
    Abin, Hamidreza
    Gohari, Amin
    Nasiri-Kenari, Masoumeh
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (12) : 8042 - 8054
  • [49] Molecular Communication over a Non-linear Reaction-Diffusion Medium: A Tractable Model
    Abin, Hamidreza
    Gohari, Amin
    Nasiri-Kenari, Masoumeh
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [50] HOMOGENIZATION OF REACTION-DIFFUSION PROCESSES IN A TWO-COMPONENT POROUS MEDIUM WITH NONLINEAR FLUX CONDITIONS AT THE INTERFACE
    Gahn, M.
    Neuss-Radu, M.
    Knabner, P.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (05) : 1819 - 1843