Homogenized model for diffusion and heterogeneous reaction in porous media: Numerical study and validation.

被引:5
|
作者
Bourbatache, Mohamed Khaled [1 ]
Millet, Olivier [2 ]
Le, Tien Dung [3 ]
Moyne, Christian [3 ]
机构
[1] Inst Natl Sci Appl, Lab Genie Civil & Genie Mecan, F-35000 Rennes, France
[2] Univ La Rochelle, CNRS, Lab Sci Ingenieur Environm, F-17000 La Rochelle, France
[3] Univ Lorraine, CNRS, LEMTA, F-54000 Nancy, France
关键词
Numerical simulations; Diffusion; reaction problem; Homogenized model; Spectral approach; PERIODIC HOMOGENIZATION; TRANSPORT; DISPERSION; CONVECTION;
D O I
10.1016/j.apm.2022.07.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In our previous work, macroscopic models for multi-species diffusion/heterogeneous reaction with different diffusion coefficients in porous media were derived from the homogenization technique based on a spectral approach ( Le et al. , Applied Mathematical Modelling, 104 , 666-681, 2022 ). This work aims to analyze numerically the properties of the eigenvalues and eigenfunctions of the spectral problem, the solution of the closure problems and the effective coefficients as a function of key parameters such as the Damkohler number, the ratios of the reaction rates and diffusion coefficients. This provides in-depth understanding of the role of the coefficients involved in the macroscopic models in the whole range of the Damkohler number. Simulation results of the macroscopic equations are compared with direct numerical simulations in unsteady regime, showing a very satisfactory agreement and thus numerically validating the proposed models. (c) 2022 Published by Elsevier Inc.
引用
收藏
页码:486 / 500
页数:15
相关论文
共 50 条
  • [1] Homogenized model of reaction-diffusion in a porous medium
    Pankratov, L
    Piatnitskii, A
    Rybalko, V
    COMPTES RENDUS MECANIQUE, 2003, 331 (04): : 253 - 258
  • [2] Homogenized Model of Diffusion in Porous Media with Nonlinear Absorption on the Boundary
    Goncharenko, M. V.
    Khil'kova, L. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2016, 67 (09) : 1349 - 1366
  • [3] Homogenized Model of Diffusion in Porous Media with Nonlinear Absorption on the Boundary
    M. V. Goncharenko
    L. A. Khil’kova
    Ukrainian Mathematical Journal, 2016, 67 : 1349 - 1366
  • [4] Multidimensional validation of a numerical model for simulating a DNAPL release in heterogeneous porous media
    Grant, Gavin P.
    Gerhard, Jason I.
    Kueper, Bernard H.
    JOURNAL OF CONTAMINANT HYDROLOGY, 2007, 92 (1-2) : 109 - 128
  • [5] Upscaled model for the diffusion/heterogeneous reaction in porous media: Boundary layer problem
    Le, Tien Dung
    Moyne, Christian
    Bourbatache, Mohamed Khaled
    Millet, Olivier
    ADVANCES IN WATER RESOURCES, 2023, 179
  • [6] Justification of a New Original Homogenized Model for Ionic Diffusion in Porous Media
    Bourbatache, M. K.
    Millet, O.
    Gagneux, G.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2023, 90 (10):
  • [7] Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
    Goncharenko, M.
    Khilkova, L.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2017, 13 (02) : 154 - 172
  • [8] Upscaling coupled heterogeneous diffusion reaction equations in porous media
    Bourbatache, M. K.
    Millet, O.
    Moyne, C.
    ACTA MECHANICA, 2023, 234 (06) : 2293 - 2314
  • [9] A spectral approach for homogenization of diffusion and heterogeneous reaction in porous media
    Le, Tien Dung
    Moyne, Christian
    Bourbatache, Khaled
    Millet, Olivier
    APPLIED MATHEMATICAL MODELLING, 2022, 104 : 666 - 681
  • [10] Upscaling coupled heterogeneous diffusion reaction equations in porous media
    M. K. Bourbatache
    O. Millet
    C. Moyne
    Acta Mechanica, 2023, 234 : 2293 - 2314