Efficient Computation of the Fisher Information Matrix in the EM Algorithm

被引:0
|
作者
Meng, Lingyao [1 ]
Spall, James C. [2 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21210 USA
[2] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20273 USA
关键词
Fisher information matrix; EM algorithm; Monte Carlo; Simultaneous perturbation stochastic approximation (SPSA); MAXIMUM-LIKELIHOOD; STOCHASTIC-APPROXIMATION; IDENTIFICATION; CONVERGENCE; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The expectation-maximization (EM) algorithm is an iterative computational method to calculate the maximum likelihood estimators (MLEs) from the sample data. When the MLE is available, we naturally want the Fisher information matrix (FIM) of unknown parameters. However, one of the limitations of the EM algorithm is that the FIM is not an automatic by-product of the algorithm. In this paper, we construct a simple Monte Carlo-based method requiring only the gradient values of the function we obtain from the E step and basic operations. The key part of our method is to utilize the simultaneous perturbation stochastic approximation method to estimate the Hessian matrix from the gradient of the conditional expectation of the complete-data log-likelihood function.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Fisher Information Matrix of Husimi Distribution
    Shunlong Luo
    Journal of Statistical Physics, 2001, 102 : 1417 - 1428
  • [32] Fisher information matrix and hyperbolic geometry
    Costa, SIR
    Santos, SA
    Strapasson, JE
    Proceedings of the IEEE ITSOC Information Theory Workshop 2005 on Coding and Complexity, 2005, : 34 - 36
  • [33] The Fisher information matrix for linear systems
    Ober, RJ
    SYSTEMS & CONTROL LETTERS, 2002, 47 (03) : 221 - 226
  • [34] An efficient algorithm for the computation of average mutual information: Validation and implementation in Matlab
    Thomas, Robin D.
    Moses, Nathan C.
    Semple, Erin A.
    Strang, Adam J.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2014, 61 : 45 - 59
  • [35] Adaptive pruning algorithm using a quantum Fisher information matrix for parameterized quantum circuits
    Ohno, Hiroshi
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (02)
  • [36] Efficient Determination of the Uncertainty for the Optimization of SPECT System Design: A Subsampled Fisher Information Matrix
    Fuin, Niccolo
    Pedemonte, Stefano
    Arridge, Simon
    Ourselin, Sebastien
    Hutton, Brian F.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (03) : 618 - 635
  • [37] A unified square-root approach for the score and Fisher information matrix computation in linear dynamic systems
    Kulikova, M. V.
    Tsyganova, J. V.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 119 : 128 - 141
  • [38] Matrix computation for information systems
    Guan, JW
    Bell, DA
    Guan, Z
    INFORMATION SCIENCES, 2001, 131 (1-4) : 129 - 156
  • [39] Efficient computation of the matrix cosine
    Sastre, Jorge
    Ibanez, Javier
    Ruiz, Pedro
    Defez, Emilio
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7575 - 7585
  • [40] Efficient Computation of Matrix Chain
    Wang, Xiaodong
    Zhu, Daxin
    Tian, Jun
    PROCEEDINGS OF THE 2013 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2013), 2013, : 703 - 707