Efficient Computation of the Fisher Information Matrix in the EM Algorithm

被引:0
|
作者
Meng, Lingyao [1 ]
Spall, James C. [2 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21210 USA
[2] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20273 USA
关键词
Fisher information matrix; EM algorithm; Monte Carlo; Simultaneous perturbation stochastic approximation (SPSA); MAXIMUM-LIKELIHOOD; STOCHASTIC-APPROXIMATION; IDENTIFICATION; CONVERGENCE; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The expectation-maximization (EM) algorithm is an iterative computational method to calculate the maximum likelihood estimators (MLEs) from the sample data. When the MLE is available, we naturally want the Fisher information matrix (FIM) of unknown parameters. However, one of the limitations of the EM algorithm is that the FIM is not an automatic by-product of the algorithm. In this paper, we construct a simple Monte Carlo-based method requiring only the gradient values of the function we obtain from the E step and basic operations. The key part of our method is to utilize the simultaneous perturbation stochastic approximation method to estimate the Hessian matrix from the gradient of the conditional expectation of the complete-data log-likelihood function.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Parameter estimation and computation of the Fisher information matrix for functions of phase type random variables
    Pavithra, Celeste R.
    Deepak, T. G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [22] A new efficient and accurate spline algorithm for the matrix exponential computation
    Defez, Emilio
    Ibanez, Javier
    Sastre, Jorge
    Peinado, Jesus
    Alonso, Pedro
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 354 - 365
  • [23] EFFICIENT OPTIMIZATION OF MRI SAMPLING PATTERNS USING THE BAYESIAN FISHER INFORMATION MATRIX
    Grosser, Mirco
    Knopp, Tobias
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 234 - 237
  • [24] An Accurate and Efficient Algorithm for the Computation of the Characteristic Polynomial of a General Square Matrix
    Vakgroep Subatomaire Stralingsfysica, Institute for Theoretical Physics, Institute for Nuclear Physics, Gent, Belgium
    J. Comput. Phys., 2 (453-458):
  • [25] Mutual Information, Fisher Information, and Efficient Coding
    Wei, Xue-Xin
    Stocker, Alan A.
    NEURAL COMPUTATION, 2016, 28 (02) : 305 - 326
  • [26] An accurate and efficient algorithm for the computation of the characteristic polynomial of a general square matrix
    Rombouts, S
    Heyde, K
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 140 (02) : 453 - 458
  • [27] 2 GENERALIZATIONS OF FISHER INFORMATION MATRIX
    KAPUR, JN
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1985, 8 (08): : 249 - 251
  • [28] Maximal quantum Fisher information matrix
    Chen, Yu
    Yuan, Haidong
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [29] On the problem of ROC analysis without truth: The EM algorithm and the information matrix.
    Beiden, SV
    Campbell, G
    Meier, KL
    Wagner, RF
    MEDICAL IMAGING 2000: IMAGE PERCEPTION AND PERFORMANCE, 2000, 3981 : 126 - 134
  • [30] Fisher information matrix of Husimi distribution
    Luo, SL
    JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (5-6) : 1417 - 1428