Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties

被引:10
|
作者
Zhang, Enwei [2 ,3 ]
Yang, Jing [1 ,2 ]
Liu, Wei [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Xingang West Rd 135, Guangzhou 510275, Guangdong, Peoples R China
[2] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[3] South China Normal Univ, South China Acad Adv Optoelect, Inst Elect Paper Display, Guangzhou 510006, Guangdong, Peoples R China
关键词
cellulose; electrical conductivity; graphene; hydrogel; mechanical enhancement; GRAPHENE OXIDE; RAMAN-SPECTRA; POLYANILINE; OPTIMIZATION; COMPOSITES; REDUCTION; STRENGTH;
D O I
10.1515/zpch-2018-1133
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrically conductive cellulose-based hydrogels are prepared by a facile and environmentally friendly method, of which the electrical and mechanical properties can be easily controlled by varying the graphene loading. With an ultralow initial addition of graphene oxide (GO, 0.2 wt% versus the mass of cellulose), the resulting cellulose/reduced graphene oxide (CG(0.2)) hydrogel shows a significantly enhanced compressive modulus of 332.01 kPa, 54.8% higher than that of pure cellulose hydrogel. Further increasing the addition of GO to 2 wt% (versus the mass of cellulose), the electrical conductivity of the resultant CG(2.0) hydrogel is as high as 7.3 x 10(-3) S/m, 10,000-fold higher than that of pure cellulose hydrogel, and of which the mechanical properties are also enhanced. These cellulose-based hydrogels with controllable electrical and mechanical properties have a great potential for application in drug delivery and artificial muscle.
引用
收藏
页码:1707 / 1716
页数:10
相关论文
共 50 条
  • [21] PREPARATION OF CELLULOSE-BASED HYDROGELS AND THEIR CHARACTERISTICS FOR CELL CULTURE
    Liu, Yuhai
    Li, Lingli
    Dong, Guanxiu
    Yang, Yanling
    Zheng, Chunzhi
    Yang, Runmiao
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2016, 50 (9-10): : 897 - 903
  • [22] Composite hydrogels reinforced by cellulose-based supramolecular filler
    Sugawara, Akihide
    Asoh, Taka-Aki
    Takashima, Yoshinori
    Harada, Akira
    Uyama, Hiroshi
    POLYMER DEGRADATION AND STABILITY, 2020, 177
  • [23] Cellulose-based tissue adhesive hydrogels for hemostatic application
    Jeon, Jihoon
    Choi, Yi Sun
    An, Soohwan
    Lee, Mi Jeong
    Han, Seung Yeop
    Bae, Yunsu
    Cho, Seung-Woo
    TISSUE ENGINEERING PART A, 2022, 28 : 710 - 710
  • [24] High efficiency antimicrobial cellulose-based nanocomposite hydrogels
    Abou-Yousef, Hussein
    Kamel, Samir
    JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (31)
  • [25] Biomimetic cellulose-based superabsorbent hydrogels for treating obesity
    Marta Madaghiele
    Christian Demitri
    Ivo Surano
    Alessandra Silvestri
    Milena Vitale
    Eliana Panteca
    Yishai Zohar
    Maria Rescigno
    Alessandro Sannino
    Scientific Reports, 11
  • [26] Cellulose-Based Conductive Hydrogels for Emerging Intelligent Sensors
    Yao, Xue
    Zhang, Sufeng
    Wei, Ning
    Qian, Liwei
    Coseri, Sergiu
    ADVANCED FIBER MATERIALS, 2024, 6 (05) : 1256 - 1305
  • [27] Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels
    Raucci, Maria Grazia
    Alvarez-Perez, Marco Antonio
    Demitri, Christian
    Sannino, Alessandro
    Ambrosio, Luigi
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2012, 10 (03) : 302 - 307
  • [28] Formulation and release of alaptide from cellulose-based hydrogels
    Sklenar, Zbynek
    Vitkova, Zuzana
    Herdova, Petra
    Horackova, Katerina
    Simunkova, Veronika
    ACTA VETERINARIA BRNO, 2012, 81 (03) : 301 - 306
  • [29] Novel grafted cellulose-based hydrogels for water technologies
    Chauhan, GS
    Lal, H
    DESALINATION, 2003, 159 (02) : 131 - 138
  • [30] Cellulose-based hydrogels: Present status and application prospects
    Chang, Chunyu
    Zhang, Lina
    CARBOHYDRATE POLYMERS, 2011, 84 (01) : 40 - 53