Extending multigrid concepts to the calculation of complex compressible flow is usually not straightforward. This is especially true when non-embedded grid hierarchies or volume agglomeration strategies are used to construct a gradation of unstructured grids. In this work, a multigrid method for solving second-order PDE's on stretched unstructured triangulations is studied. The finite volume agglomeration multigrid technique originally developed for solving the Euler equations is used (M.-H. Lallemand and A. Dervieux, in Multigrid Methods, Theory, Applications and Supercomputing, Marcel Dekker, 337-363 (1988)). First, a directional semi-coarsening strategy based on Poisson's equation is proposed. The second-order derivatives are approximated on each level by introducing a correction factor adapted to the semi-coarsening strategy. Then, this method is applied to solve the Poisson equation. It is extended to the 2D Reynolds-averaged Navier-Stokes equations with appropriate boundary treatment for low-Reynolds number turbulent flows. (C) 1998 John Wiley & Sons, Ltd.