Agglomeration-based geometric multigrid solvers for compact discontinuous Galerkin discretizations on unstructured meshes

被引:2
|
作者
Pan, Y. [1 ,2 ]
Persson, P-O [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Math Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA
关键词
Discontinuous Galerkin; Agglomeration; Geometric multigrid;
D O I
10.1016/j.jcp.2021.110775
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a geometric multigrid solver for the Compact Discontinuous Galerkin method through building a hierarchy of coarser meshes using a simple agglomeration method which handles arbitrary element shapes and dimensions. The method is easily extendable to other discontinuous Galerkin discretizations, including the Local DG method and the Interior Penalty method. We demonstrate excellent solver performance for Poisson's equation, provided a flux formulation is used for the operator coarsening and a suitable switch function chosen for the numerical fluxes. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条