Agglomeration-based geometric multigrid solvers for compact discontinuous Galerkin discretizations on unstructured meshes

被引:2
|
作者
Pan, Y. [1 ,2 ]
Persson, P-O [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Math Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA
关键词
Discontinuous Galerkin; Agglomeration; Geometric multigrid;
D O I
10.1016/j.jcp.2021.110775
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a geometric multigrid solver for the Compact Discontinuous Galerkin method through building a hierarchy of coarser meshes using a simple agglomeration method which handles arbitrary element shapes and dimensions. The method is easily extendable to other discontinuous Galerkin discretizations, including the Local DG method and the Interior Penalty method. We demonstrate excellent solver performance for Poisson's equation, provided a flux formulation is used for the operator coarsening and a suitable switch function chosen for the numerical fluxes. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter on Unstructured Meshes
    Zhu, Jun
    Zhong, Xinghui
    Shu, Chi-Wang
    Qiu, Jianxian
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (03) : 623 - 649
  • [22] Agglomeration-based physical frame dG discretizations: An attempt to be mesh free
    Bassi, Francesco
    Botti, Lorenzo
    Colombo, Alessandro
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08): : 1495 - 1539
  • [23] A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations
    Qingguo Hong
    Johannes Kraus
    Jinchao Xu
    Ludmil Zikatanov
    Numerische Mathematik, 2016, 132 : 23 - 49
  • [24] Robust Multigrid Methods for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem
    Liu, Sijing
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2025, 25 (01) : 133 - 151
  • [25] A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations
    Hong, Qingguo
    Kraus, Johannes
    Xu, Jinchao
    Zikatanov, Ludmil
    NUMERISCHE MATHEMATIK, 2016, 132 (01) : 23 - 49
  • [26] UNSTRUCTURED GEOMETRIC MULTIGRID IN TWO AND THREE DIMENSIONS ON COMPLEX AND GRADED MESHES
    Brune, Peter R.
    Knepley, Matthew G.
    Scott, L. Ridgway
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : A173 - A191
  • [27] On the accuracy of finite volume and discontinuous Galerkin discretizations for compressible flow on unstructured grids
    Nogueira, X.
    Cueto-Felgueroso, L.
    Colominas, I.
    Gomez, H.
    Navarrina, F.
    Casteleiro, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (13) : 1553 - 1584
  • [28] A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes
    Lee, D.
    Lowrie, R.
    Petersen, M.
    Ringler, T.
    Hecht, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 324 : 289 - 302
  • [29] Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method
    de la Puente, J.
    Ampuero, J. -P.
    Kaeser, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2009, 114
  • [30] A second order discontinuous Galerkin method for advection on unstructured triangular meshes
    Geijselaers, HJM
    Huétink, J
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2003, 19 (04): : 275 - 284