Numerical results for the Klein-Gordon equation in de Sitter spacetime

被引:2
|
作者
Selvitopi, Harun [1 ]
Yazici, Muhammet [2 ]
机构
[1] Erzurum Tech Univ, Dept Math, Erzurum, Turkey
[2] Karadeniz Tech Univ, Dept Math, Trabzon, Turkey
关键词
de Sitter spacetime; finite difference method; finite element method; Klein-Gordon equation; GLOBAL CAUCHY-PROBLEM; SCALAR FIELD; EXISTENCE;
D O I
10.1002/mma.5415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem for the Klein-Gordon equation in de Sitter spacetime. We use the central difference scheme on the temporal discretization. We also discretize the spatial variable using the finite element method with implicit and the Crank-Nicolson schemes for the numerical solution of the initial value problem. In order to show the accuracy for the results of the solutions, we also examine the finite difference methods. We observe that the numerical results obtained by using these methods are compatible.
引用
收藏
页码:5446 / 5454
页数:9
相关论文
共 50 条
  • [31] Numerical estimation of the fractional Klein-Gordon equation with Discrete
    Partohaghighi, Mohammad
    Mortezaee, Marzieh
    Akgul, Ali
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 90 : 44 - 53
  • [32] Scattering Theory for the Charged Klein–Gordon Equation in the Exterior De Sitter–Reissner–Nordström Spacetime
    Nicolas Besset
    The Journal of Geometric Analysis, 2021, 31 : 10521 - 10585
  • [33] Numerical analysis for the Klein-Gordon equation with mass parameter
    Alkahtani, Badr Saad T.
    Atangana, Abdon
    Koca, Ilknur
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [34] Numerical analysis for the Klein-Gordon equation with mass parameter
    Badr Saad T Alkahtani
    Abdon Atangana
    Ilknur Koca
    Advances in Difference Equations, 2017
  • [35] Dirac and Klein-Gordon oscillators on anti-de Sitter space
    Hamil, B.
    Merad, M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (05):
  • [36] Dirac and Klein-Gordon oscillators on anti-de Sitter space
    B. Hamil
    M. Merad
    The European Physical Journal Plus, 133
  • [37] Klein-Gordon and Dirac equations in de Sitter space-time
    Notte Cuello, EA
    de Oliveira, EC
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (02) : 585 - 598
  • [38] A NONLINEAR KLEIN-GORDON EQUATION
    SCOTT, AC
    AMERICAN JOURNAL OF PHYSICS, 1969, 37 (01) : 52 - &
  • [39] KLEIN-GORDON EQUATION FOR SPINORS
    MARX, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (08) : 1559 - &
  • [40] Quaternionic Klein-Gordon equation
    Giardino, Sergio
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (06):