Dirac and Klein-Gordon oscillators on anti-de Sitter space

被引:45
|
作者
Hamil, B. [1 ]
Merad, M. [2 ]
机构
[1] Univ Hassiba Benbouali, Dept TC SNV, Chlef, Algeria
[2] Univ Oum El Bouaghi, Fac Sci Exactes, Lab LSDC, Oum El Bouaghi 04000, Algeria
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2018年 / 133卷 / 05期
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; MINIMAL LENGTH; GEOMETRY; TIME;
D O I
10.1140/epjp/i2018-11996-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Dirac and Klein-Gordon oscillators on anti-de Sitter space were considered in a space with deformed commutation relations. Anti-de Sitter commutation relations give rise to the appearance of minimal uncertainty in the momentum. Using the position space representation, we determine the energy eigenvalues and the eigenfunctions for both cases. The wave functions can be given in terms of Gegenbauer polynomials. The high-temperature thermodynamic properties of the relativistic harmonic oscillators are then analyzed.
引用
收藏
页数:11
相关论文
共 50 条