Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method

被引:47
|
作者
Sun, Jun [1 ]
Zhao, Ji [1 ]
Wu, Xiaojun [1 ]
Fang, Wei [1 ]
Cai, Yujie [2 ]
Xu, Wenbo [1 ]
机构
[1] Jiangnan Univ, Sch Informat Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Biotechnol, Key Lab Ind Biotechnol, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaotic systems; Parameter estimation; Global optimization; Particle Swarm Optimization; Drift motion; IDENTIFICATION;
D O I
10.1016/j.physleta.2010.04.071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inspired by the motion of electrons in metal conductors in an electric field, we propose a variant of Particle Swarm Optimization (PSO), called Drift Particle Swarm Optimization (DPSO) algorithm, and apply it in estimating the unknown parameters of chaotic dynamic systems. The principle and procedure of DPSO are presented, and the algorithm is used to identify Lorenz system and Chen system. The experiment results show that for the given parameter configurations, DPSO can identify the parameters of the systems accurately and effectively, and it may be a promising tool for chaotic system identification as well as other numerical optimization problems in physics. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2816 / 2822
页数:7
相关论文
共 50 条
  • [21] Multiobjective particle swarm optimization for parameter estimation in hydrology
    Gill, M. Kashif
    Kaheil, Yasir H.
    Khalil, Abedalrazq
    McKee, Mac
    Bastidas, Luis
    WATER RESOURCES RESEARCH, 2006, 42 (07)
  • [22] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [23] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [24] Directing orbits of chaotic systems by particle swarm optimization
    Liu, B
    Wang, L
    Tang, F
    Huang, D
    CHAOS SOLITONS & FRACTALS, 2006, 29 (02) : 454 - 461
  • [25] Chaos particle swarm optimization with Eensemble of chaotic systems
    Pluhacek, Michal
    Senkerik, Roman
    Davendra, Donald
    SWARM AND EVOLUTIONARY COMPUTATION, 2015, 25 : 29 - 35
  • [26] Cosmological parameter estimation using particle swarm optimization
    Prasad, Jayanti
    Souradeep, Tarun
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [27] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li, Li-Xiang
    Peng, Hai-Peng
    Yang, Yi-Xian
    Wang, Xiang-Dong
    Wuli Xuebao/Acta Physica Sinica, 2007, 56 (01): : 51 - 55
  • [28] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li Li-Xiang
    Peng Hai-Peng
    Yang Yi-Xian
    Wang Xiang-Dong
    ACTA PHYSICA SINICA, 2007, 56 (01) : 51 - 55
  • [29] Chaotic Particle Swarm Optimization
    Sun, Yanxia
    Qi, Guoyuan
    Wang, Zenghui
    van Wyk, Barend Jacobus
    Hamam, Yskandar
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 505 - 510
  • [30] Parameter estimation of dynamical systems via a chaotic ant swarm
    Peng, Haipeng
    Li, Lixiang
    Yang, Yixian
    Liu, Fei
    PHYSICAL REVIEW E, 2010, 81 (01):