Power Demand Forecasting Using Stochastic Model: Parameter Estimation

被引:0
|
作者
Ma, Ruihong [1 ]
Wu, Rentao [2 ]
Khanwala, Mustafa A. [3 ]
Li, Dan [4 ]
Dang, Shuping [5 ]
机构
[1] Henan Danfeng Technol Co Ltd, Zhengzhou 450001, Peoples R China
[2] Univ Edinburgh, Inst Energy Syst, Edinburgh EH9 3DW, Midlothian, Scotland
[3] UCL, Sch Mech Engn, London WC1E 7JE, England
[4] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
[5] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
关键词
parameter estimation; power demand forecasting; stochastic model;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Since it was first proposed, the new method of power demand forecasting using a stochastic model has been greatly talked about in the scientific community and increasing number of practical applications are being developed, since it is a simple and effective approach to forecast power demand within a small time interval. However, the relevant literature still assumes that all statistic parameters can be estimated perfectly and this assumption might not always be applicable. In this paper, we propose to use a shift register array to estimate these parameters. Using analysis techniques and factoring the length of the array we can then increase the precision in the estimated results. The precision of these results was proven using simulations, the results of which have also been documented here.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Exploring Heat Demand Forecasting in District Heating Networks Using Random Parameter Linear Regression Model
    Ali, Hesham
    Dedov, Andrei
    Volkova, Anna
    ENVIRONMENTAL AND CLIMATE TECHNOLOGIES, 2024, 28 (01) : 670 - 685
  • [42] Parameter Evaluation in Motion Estimation for Forecasting Multiple Photovoltaic Power Generation
    Kure, Taiki
    Tsuchiya, Haruka Danil
    Kameda, Yusuke
    Yamamoto, Hiroki
    Kodaira, Daisuke
    Kondoh, Junji
    ENERGIES, 2022, 15 (08)
  • [43] Bayesian estimation of stochastic parameterizations in a numerical weather forecasting model
    Song, Yong
    Wikle, Christopher K.
    Anderson, Christopher J.
    Lack, Steven A.
    MONTHLY WEATHER REVIEW, 2007, 135 (12) : 4045 - 4059
  • [44] Parameter estimation using simultaneous perturbation stochastic approximation
    Hirokami, T
    Maeda, Y
    Tsukada, H
    ELECTRICAL ENGINEERING IN JAPAN, 2006, 154 (02) : 30 - 39
  • [45] Parameter Estimation in SAR Imagery using Stochastic Distances
    Cassetti, Julia
    Gambini, Juliana
    Frery, Alejandro C.
    CONFERENCE PROCEEDINGS OF 2013 ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2013, : 573 - 576
  • [46] Using stochastic approximation for parameter estimation in option pricing
    Yin, G.
    Zhang, Q.
    Zhuang, C.
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 5951 - +
  • [47] Stochastic MPC for energy hubs using data driven demand forecasting
    Micheli, Francesco
    Behrunani, Varsha
    Mehr, Jonas
    Heer, Philipp
    Lygeros, John
    IFAC PAPERSONLINE, 2023, 56 (02): : 11026 - 11031
  • [48] Applications of improved grey prediction model for power demand forecasting
    Hsu, CC
    Chen, CY
    ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (14) : 2241 - 2249
  • [49] Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information
    Guo, Song
    Norris, Sean
    Bialek, Janusz
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (06) : 2854 - 2861
  • [50] Demand forecasting in a power system
    Tripathy, SC
    ENERGY CONVERSION AND MANAGEMENT, 1997, 38 (14) : 1475 - 1481