Interpretation of allele-specific chromatin accessibility using cell state-aware deep learning

被引:24
|
作者
Atak, Zeynep Kalender [1 ,2 ,5 ]
Taskiran, Ibrahim Ihsan [1 ,2 ]
Demeulemeester, Jonas [1 ,2 ,3 ]
Flerin, Christopher [1 ,2 ]
Mauduit, David [1 ,2 ]
Minnoye, Liesbeth [1 ,2 ]
Hulselmans, Gert [1 ,2 ]
Christiaens, Valerie [1 ,2 ]
Ghanem, Ghanem-Elias [4 ]
Wouters, Jasper [1 ,2 ]
Aerts, Stein [1 ,2 ]
机构
[1] VIB KU Leuven Ctr Brain & Dis Res, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Human Genet, B-3000 Leuven, Belgium
[3] Francis Crick Inst, Canc Genom Lab, London NW1 1AT, England
[4] Univ Libre Bruxelles, Inst Jules Bordet, B-1000 Brussels, Belgium
[5] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge CB2 0RE, England
基金
欧洲研究理事会;
关键词
TERT PROMOTER MUTATIONS; FACTOR-DNA-BINDING; REGULATORY ELEMENTS; EXPRESSION; TRANSCRIPTION; VARIANTS; IDENTIFICATION; ZEB; ARCHITECTURE; NETWORK;
D O I
10.1101/gr.260851.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genomic sequence variation within enhancers and promoters can have a significant impact on the cellular state and phenotype. However, sifting through the millions of candidate variants in a personal genome or a cancer genome, to identify those that impact cis-regulatory function, remains a major challenge. Interpretation of noncoding genome variation benefits from explainable artificial intelligence to predict and interpret the impact of a mutation on gene regulation. Here we generate phased whole genomes with matched chromatin accessibility, histone modifications, and gene expression for 10 melanoma cell lines. We find that training a specialized deep learning model, called DeepMEL2, on melanoma chromatin accessibility data can capture the various regulatory programs of the melanocytic and mesenchymal-like melanoma cell states. This model outperforms motif-based variant scoring, as well as more generic deep learning models. We detect hundreds to thousands of allele-specific chromatin accessibility variants (ASCAVs) in each melanoma genome, of which 15%-20% can be explained by gains or losses of transcription factor binding sites. A considerable fraction of ASCAVs are caused by changes in AP-1 binding, as confirmed by matched ChIP-seq data to identify allele-specific binding of JUN and FOSL1. Finally, by augmenting the DeepMEL2 model with ChIP-seq data for GABPA, the TERT promoter mutation, as well as additional ETS motif gains, can be identified with high confidence. In conclusion, we present a new integrative genomics approach and a deep learning model to identify and interpret functional enhancer mutations with allelic imbalance of chromatin accessibility and gene expression.
引用
收藏
页码:1082 / 1096
页数:16
相关论文
共 50 条
  • [31] Allele-specific Mutation Detection qPCR: A Sensitive Method for Detection of Early Colorectal Cancer Mutations Using Circulating Cell-free DNA
    Myint, Ni Ni Moe
    Brown, Karen
    Pringle, J. Howard
    Shaw, Jacqui
    Trigg, Ricky
    Rufini, Alessandro
    MUTAGENESIS, 2014, 29 (06) : 526 - 526
  • [32] Correction of Mutant p63 in EEC Syndrome Using siRNA Mediated Allele-Specific Silencing Restores Defective Stem Cell Function
    Barbaro, Vanessa
    Nasti, Annamaria A.
    Del Vecchio, Claudia
    Ferrari, Stefano
    Migliorati, Angelo
    Raffa, Paolo
    Lariccia, Vincenzo
    Nespeca, Patrizia
    Biasolo, Mariangela
    Willoughby, Colin E.
    Ponzin, Diego
    Palu, Giorgio
    Parolin, Cristina
    Di Iorio, Enzo
    STEM CELLS, 2016, 34 (06) : 1588 - 1600
  • [33] HLA class I expression in cell lines derived from conjunctival melanoma and retinoblastoma using allele-specific monoclonal antibodies and flow cytometry
    Smesseim, Rind
    Cao, Jinfeng
    Van Essen, T. Huibertus
    Mulder, Arend
    van Zeeburg, Elsbeth
    Ksander, Bruce R.
    Jager, Martine J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [34] Comparison Of Deep Sequencing and Allele-Specific Oligonucleotide PCR Methods For MRD Quantitation In Acute Lymphoblastic Leukemia and Mantle Cell Lymphoma: CALGB 10403 and CALGB 59909 (Alliance)
    Malnassy, Greg
    Geyer, Susan
    Fulton, Noreen
    Koval, Greg
    Niedzwiecki, Donna
    Carlton, Victoria
    Weng, Li
    Kaplan, Lawrence D.
    Marcucci, Guido
    Damon, Lloyd E.
    Larson, Richard A.
    Stone, Richard M.
    Cheson, Bruce D.
    Faham, Malek
    Stock, Wendy
    BLOOD, 2013, 122 (21)
  • [35] Detection of the G17V RHOA Mutation in Angioimmunoblastic T-Cell Lymphoma and Related Lymphomas Using Quantitative Allele-Specific PCR
    Nakamoto-Matsubara, Rie
    Sakata-Yanagimoto, Mamiko
    Enami, Terukazu
    Yoshida, Kenichi
    Yanagimoto, Shintaro
    Shiozawa, Yusuke
    Nanmoku, Tohru
    Satomi, Kaishi
    Muto, Hideharu
    Obara, Naoshi
    Kato, Takayasu
    Kurita, Naoki
    Yokoyama, Yasuhisa
    Izutsu, Koji
    Ota, Yasunori
    Sanada, Masashi
    Shimizu, Seiichi
    Komeno, Takuya
    Sato, Yuji
    Ito, Takayoshi
    Kitabayashi, Issay
    Takeuchi, Kengo
    Nakamura, Naoya
    Ogawa, Seishi
    Chiba, Shigeru
    PLOS ONE, 2014, 9 (10):
  • [36] CellGO: a novel deep learning-based framework and webserver for cell-type-specific gene function interpretation
    Li, Peilong
    Wei, Junfeng
    Zhu, Ying
    BRIEFINGS IN BIOINFORMATICS, 2023, 25 (01)
  • [37] DETECTION OF EGFR MUTATIONS IN PLASMA AND DIAGNOSIS BIOPSIES FROM NON-SMALL CELL LUNG CANCER PATIENTS USING ALLELE-SPECIFIC PCR ASSAYS.
    Weber, Britta
    Meldgaard, Peter
    Hager, Henrik
    Wu, Lin
    Tsai, Julie
    Wen, Wei
    Khalil, Azza A.
    Nexo, Ebba
    Sorensen, Boe
    JOURNAL OF THORACIC ONCOLOGY, 2013, 8 : S387 - S387
  • [38] PRECISE PREDICTION OF A K(K)-RESTRICTED CYTOTOXIC T-CELL EPITOPE IN THE NS1 PROTEIN OF INFLUENZA-VIRUS USING AN MHC ALLELE-SPECIFIC MOTIF
    COSSINS, J
    GOULD, KG
    SMITH, M
    DRISCOLL, P
    BROWNLEE, GG
    VIROLOGY, 1993, 193 (01) : 289 - 295
  • [39] Prevention of photoreceptor cell degeneration in P23H rats after allele-specific knockdown of mutant Rhodopsin RNA expression using antisense oligonucleotide (ASO) treatment
    Murray, Sue F.
    Jazayeri, Ali
    LaVail, Matthew M.
    Matthes, Michael T.
    Yasumura, Douglas
    Yang, Haidong
    McCaleb, Michael
    Peralta, Raechel
    Watt, Andy
    Monia, Brett
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [40] SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models
    Wang, Yupeng
    Jaime-Lara, Rosario B.
    Roy, Abhrarup
    Sun, Ying
    Liu, Xinyue
    Joseph, Paule, V
    BMC RESEARCH NOTES, 2021, 14 (01)