The author proposes some simple diagnostics for assessing the necessity of selected terms in smoothing spline ANOVA models. The elimination of practically insignificant terms generally enhances the interpretability of the estimates and sometimes may also have inferential implications. The diagnostics are derived from Kullback-Leibler geometry and are illustrated in the settings of regression, probability density estimation, and hazard rate estimation.
机构:
Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USAUniv Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
Liu, Anna
Qin, Li
论文数: 0引用数: 0
h-index: 0
机构:
Fred Hutchinson Canc Res Ctr, Stat Ctr HIV AIDS Res & Prevent, Seattle, WA 98109 USA
Univ Washington, Dept Biostat, Seattle, WA 98195 USAUniv Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
Qin, Li
Staudenmayer, John
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USAUniv Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
Liu, A
Wang, YD
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA