M-type smoothing spline ANOVA for correlated data

被引:5
|
作者
Liu, Anna [1 ]
Qin, Li [2 ,3 ]
Staudenmayer, John [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Fred Hutchinson Canc Res Ctr, Stat Ctr HIV AIDS Res & Prevent, Seattle, WA 98109 USA
[3] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
关键词
Correlated data; Longitudinal data; Nonparametric regression; Resistant smoothing parameter; Robust; MAXIMUM-LIKELIHOOD-ESTIMATION; ROBUST ESTIMATION; LINEAR-MODELS; MIXED MODELS; REGRESSION; SELECTION;
D O I
10.1016/j.jmva.2010.06.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper concerns outlier robust non-parametric regression with smoothing splines for data that are possibly correlated. We define a robust smoother as the minimizer of a penalized robustified log likelihood. Our estimation algorithm uses iteratively reweighted least squares to estimate the regression function. We develop two types of robust methods for joint estimation of the smoothing parameters and the correlation parameters: indirect methods and direct methods, terms borrowed from the related generalized smoothing spline literature. The indirect methods choose those parameters by conveniently approximating the distribution of the working data at each iteration as Gaussian. The direct methods estimate those parameters to minimize an estimate of the loss between the truth and the final estimated regression. Indirect methods are computationally more efficient, but our empirical studies suggest that direct methods result in more accurate estimates. Finally, the methods are applied to a data set from a macaque Simian-Human Immunodeficiency Virus (SHIV) challenge study. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2282 / 2296
页数:15
相关论文
共 50 条
  • [1] M-type smoothing spline estimators for principal functions
    Lee, Seokho
    Shin, Hyejin
    BiIlor, Nedret
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 66 : 89 - 100
  • [2] Backfitting in smoothing spline ANOVA
    Luo, Z
    [J]. ANNALS OF STATISTICS, 1998, 26 (05): : 1733 - 1759
  • [3] Smoothing Spline ANOVA Frailty Model for Recurrent Event Data
    Du, Pang
    Jiang, Yihua
    Wang, Yuedong
    [J]. BIOMETRICS, 2011, 67 (04) : 1330 - 1339
  • [4] Bayes Factors for Smoothing Spline ANOVA
    Cheng, Chin-I.
    Speckman, Paul L.
    [J]. BAYESIAN ANALYSIS, 2016, 11 (04): : 957 - 975
  • [5] ASYMPTOTICS FOR M-TYPE SMOOTHING SPLINES
    COX, DD
    [J]. ANNALS OF STATISTICS, 1983, 11 (02): : 530 - 551
  • [6] Designs for smoothing spline ANOVA models
    Yue, RX
    Hickernell, FJ
    [J]. METRIKA, 2002, 55 (03) : 161 - 176
  • [7] Designs for smoothing spline ANOVA models
    Rong-Xian Yue
    Fred J. Hickernell
    [J]. Metrika, 2002, 55 : 161 - 176
  • [8] Smoothing Spline ANOVA for Variable Screening
    Ricco, Laura
    Rigoni, Enrico
    Turco, Alessandro
    [J]. DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2013, 6 : 130 - 139
  • [9] Smoothing spline ANOVA for multivariate Bernoulli observations, with application to ophthalmology data
    Gao, FY
    Wahba, G
    Klein, R
    Klein, B
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 127 - 147
  • [10] Model diagnostics for smoothing spline ANOVA models
    Gu, C
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2004, 32 (04): : 347 - 358