Improved estimates for the approximation numbers of Hardy-type operators

被引:23
|
作者
Lang, J [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
approximation numbers; Hardy-type operators; integral operators; weighted spaces;
D O I
10.1016/S0021-9045(02)00043-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Hardy-type integral operator T : L-p (a,b) L-p (a, b), -infinity less than or equal to a < b less than or equal to infinity, which is defined by (Tf)(x) = v(x) integral(a)(x) u(t)f(t) dt. In the papers by Edmunds et a]. (J. London Math. Soc. (2) 37 (1988) 471) and Evans et a]. (Studia Math. 130 (2) (1998) 171) upper and lower estimates and asymptotic results were obtained for the approximation numbers a(n) (T) of T. In case p = 2 for "nice" u and v these results were improved in Edmunds et al. (J. Anal. Math. 85 (2001) 225). In this paper, we extend these results for 1 < p < infinity by using a new technique. We will show that under suitable conditions on u and v, lim(n-->infinity)sup n(1/2)\lambda(p)(-1/p) integral(a)(b) \u(t)v(t)\ dt - na(n) (T)\ less than or equal to c(\\u'\\(p'/p'+1)) + \\upsilon'\\(p/(p+1)))(\\u\\(p') + \\upsilon\\(p)) + 3alpha(p) \\uv\\(1), where \\w\\(p) = (integral(a)(b)\w(t)\(p) dt)(1/p) and lambda(p) is the first eigenvalue of the p-Laplacian eigenvalue f", problem on (0, 1). (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [21] ORDER-SHARP ESTIMATES FOR HARDY-TYPE OPERATORS ON THE CONES OF FUNCTIONS WITH PROPERTIES OF MONOTONICITY
    Goldman, M. L.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2012, 3 (02): : 53 - 84
  • [22] Optimal Hardy-type inequalities for elliptic operators
    Devyver, Baptiste
    Fraas, Martin
    Pinchover, Yehuda
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (9-10) : 475 - 479
  • [23] Weighted Hardy-Type Operators on Nonincreasing Cones
    Sun, Qinxiu
    Li, Hongliang
    [J]. MATHEMATICAL NOTES, 2020, 107 (5-6) : 1002 - 1013
  • [24] Weighted Hardy-Type Operators on Nonincreasing Cones
    Qinxiu Sun
    Hongliang Li
    [J]. Mathematical Notes, 2020, 107 : 1002 - 1013
  • [25] Remainder estimates for the approximation numbers of weighted Hardy operators acting onL2
    D. E. Edmunds
    R. Kerman
    J. Lang
    [J]. Journal d’Analyse Mathématique, 2001, 85 : 225 - 243
  • [26] Remainder estimates for the approximation numbers of weighted hardy operators acting on L2
    Edmunds, DE
    Kerman, R
    Lang, J
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1): : 225 - 243
  • [27] REVERSE HARDY-TYPE INEQUALITIES FOR SUPREMAL OPERATORS WITH MEASURES
    Mustafayev, Rza
    Unver, Tugce
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1295 - 1311
  • [28] Optimal rearrangement invariant range for Hardy-type operators
    Soria, Javier
    Tradacete, Pedro
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (04) : 865 - 893
  • [29] Convolution Algebraic Structures Defined by Hardy-Type Operators
    Miana, Pedro J.
    Royo, Juan J.
    Sanchez-Lajusticia, Luis
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [30] Integral conditions for Hardy-type operators involving suprema
    Martin Křepela
    [J]. Collectanea Mathematica, 2017, 68 : 21 - 50