Remainder estimates for the approximation numbers of weighted hardy operators acting on L2

被引:12
|
作者
Edmunds, DE [1 ]
Kerman, R
Lang, J
机构
[1] Univ Sussex, Ctr Math Anal & Applicat, Brighton BN1 9QH, E Sussex, England
[2] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
[3] Univ Missouri, Dept Math, Columbia, MO 65211 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2001年 / 85卷 / 1期
关键词
D O I
10.1007/BF02788082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the weighted Hardy integral operator T : L-2 (a, b) --> L-2 (a, b), -infinity less than or equal to a < b less than or equal to infinity, defined by (Tf) (x) = v(x) integral (x)(a) u(t)f(t)dt. In [EEH1] and [EEH2], under certain conditions on u and v, upper and lower estimates and asymptotic results were obtained for the approximation numbers a, (T) of T. In this paper, we show that under suitable conditions on u and v, lim(n --> infinity) sup n(1/2) \ (1)/(pi)integral (b)(a)\u(t)v(t)\ dt - na(n) (T)\ less than or equal to c(\ \u'\ \ (2/3) + \ \v'\ \ (2/3))(\ \u \ \ (2) + \ \v \ \ (2)) + (3)/(pi)\ \ uv \ \ (1), where \ \w \ \ (p) = (integral (b)(a)\w(t)\ (P)dt)(1/p).
引用
收藏
页码:225 / 243
页数:19
相关论文
共 50 条