Improved estimates for the approximation numbers of Hardy-type operators

被引:23
|
作者
Lang, J [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
approximation numbers; Hardy-type operators; integral operators; weighted spaces;
D O I
10.1016/S0021-9045(02)00043-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Hardy-type integral operator T : L-p (a,b) L-p (a, b), -infinity less than or equal to a < b less than or equal to infinity, which is defined by (Tf)(x) = v(x) integral(a)(x) u(t)f(t) dt. In the papers by Edmunds et a]. (J. London Math. Soc. (2) 37 (1988) 471) and Evans et a]. (Studia Math. 130 (2) (1998) 171) upper and lower estimates and asymptotic results were obtained for the approximation numbers a(n) (T) of T. In case p = 2 for "nice" u and v these results were improved in Edmunds et al. (J. Anal. Math. 85 (2001) 225). In this paper, we extend these results for 1 < p < infinity by using a new technique. We will show that under suitable conditions on u and v, lim(n-->infinity)sup n(1/2)\lambda(p)(-1/p) integral(a)(b) \u(t)v(t)\ dt - na(n) (T)\ less than or equal to c(\\u'\\(p'/p'+1)) + \\upsilon'\\(p/(p+1)))(\\u\\(p') + \\upsilon\\(p)) + 3alpha(p) \\uv\\(1), where \\w\\(p) = (integral(a)(b)\w(t)\(p) dt)(1/p) and lambda(p) is the first eigenvalue of the p-Laplacian eigenvalue f", problem on (0, 1). (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [1] Estimates for n-widths of the Hardy-type operators (Addendum to "Improved estimates for the approximation numbers of the Hardy-type operators")
    Lang, J
    [J]. JOURNAL OF APPROXIMATION THEORY, 2006, 140 (02) : 141 - 146
  • [2] The approximation numbers of hardy-type operators on trees
    Evans, WD
    Harris, DJ
    Lang, J
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 : 390 - 418
  • [3] Hardy-type estimates for Dirac operators
    Dolbeault, Jean
    Esteban, Maria J.
    Duoandikoetxea, Javier
    Vega, Luis
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (06): : 885 - 900
  • [4] On the compactness and approximation numbers of Hardy-type integral operators in Lorentz spaces
    Lomakina, E
    Stepanov, V
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 : 369 - 382
  • [5] Two-sided estimates for the approximation numbers of Hardy-type operators in L∞ and L1
    Evans, WD
    Harris, DJ
    Lang, J
    [J]. STUDIA MATHEMATICA, 1998, 130 (02) : 171 - 192
  • [6] On asymptotic behavior of the approximation numbers and estimates of Schatten-von Neumann norms of the hardy-type integral operators
    Lomakina, EN
    Stepanov, VD
    [J]. DOKLADY AKADEMII NAUK, 1999, 367 (05) : 594 - 596
  • [7] ADDITIVE ESTIMATES FOR DISCRETE HARDY-TYPE OPERATORS
    Kalybay, A.
    Shalginbayeva, S.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2018, 9 (02): : 44 - 53
  • [8] SHARP WEAK ESTIMATES FOR HARDY-TYPE OPERATORS
    Gao, Guilian
    Hu, Xiaomin
    Zhang, Chunjie
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (03): : 421 - 433
  • [9] Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case
    Edmunds, D. E.
    Lang, J.
    [J]. MATHEMATISCHE NACHRICHTEN, 2006, 279 (07) : 727 - 742
  • [10] Interpolation of Operators in Hardy-Type Spaces
    Krotov, V. G.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) : 173 - 187