Prototype of a bistable polariton field-effect transistor switch

被引:14
|
作者
Suchomel, H. [1 ,2 ]
Brodbeck, S. [1 ,2 ]
Liew, T. C. H. [3 ]
Amthor, M. [1 ,2 ]
Klaas, M. [1 ,2 ]
Klembt, S. [1 ,2 ]
Kamp, M. [1 ,2 ]
Hoefling, S. [1 ,2 ,4 ]
Schneider, C. [1 ,2 ]
机构
[1] Univ Wurzburg, Tech Phys, D-97074 Wurzburg, Germany
[2] Univ Wurzburg, Wilhelm Conrad Rontgen Res Ctr Complex Mat Syst, D-97074 Wurzburg, Germany
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[4] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
ELECTRIC-FIELD;
D O I
10.1038/s41598-017-05277-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microcavity exciton polaritons are promising candidates to build a new generation of highly nonlinear and integrated optoelectronic devices. Such devices range from novel coherent light emitters to reconfigurable potential landscapes for electro-optical polariton-lattice based quantum simulators as well as building blocks of optical logic architectures. Especially for the latter, the strongly interacting nature of the light-matter hybrid particles has been used to facilitate fast and efficient switching of light by light, something which is very hard to achieve with weakly interacting photons. We demonstrate here that polariton transistor switches can be fully integrated in electro-optical schemes by implementing a one-dimensional polariton channel which is operated by an electrical gate rather than by a control laser beam. The operation of the device, which is the polariton equivalent to a field-effect transistor, relies on combining electro-optical potential landscape engineering with local exciton ionization to control the scattering dynamics underneath the gate. We furthermore demonstrate that our device has a region of negative differential resistance and features a completely new way to create bistable behavior.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A TIN OXIDE FIELD-EFFECT TRANSISTOR
    KLASENS, HA
    KOELMANS, H
    [J]. SOLID-STATE ELECTRONICS, 1964, 7 (09) : 701 - 702
  • [32] A ferroelectric semiconductor field-effect transistor
    Si, Mengwei
    Saha, Atanu K.
    Gao, Shengjie
    Qiu, Gang
    Qin, Jingkai
    Duan, Yuqin
    Jian, Jie
    Niu, Chang
    Wang, Haiyan
    Wu, Wenzhuo
    Gupta, Sumeet K.
    Ye, Peide D.
    [J]. NATURE ELECTRONICS, 2019, 2 (12) : 580 - 586
  • [33] Contact Electrification Field-Effect Transistor
    Zhang, Chi
    Tang, Wei
    Zhang, Limin
    Han, Changbao
    Wang, Zhong Lin
    [J]. ACS NANO, 2014, 8 (08) : 8702 - 8709
  • [34] Junctionless multigate field-effect transistor
    Lee, Chi-Woo
    Afzalian, Aryan
    Akhavan, Nima Dehdashti
    Yan, Ran
    Ferain, Isabelle
    Colinge, Jean-Pierre
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (05)
  • [35] HETEROJUNCTION FIELD-EFFECT TRANSISTOR LASER
    SUZUKI, Y
    YAJIMA, H
    SHIMOYAMA, K
    INOUE, Y
    KATOH, M
    GOTOH, H
    [J]. ELECTRONICS LETTERS, 1990, 26 (19) : 1632 - 1633
  • [36] AN AMBIPOLAR FIELD-EFFECT TRANSISTOR MODEL
    PFLEIDERER, H
    KUSIAN, W
    BULLEMER, B
    [J]. SIEMENS FORSCHUNGS-UND ENTWICKLUNGSBERICHTE-SIEMENS RESEARCH AND DEVELOPMENT REPORTS, 1985, 14 (02): : 69 - 75
  • [37] A polysaccharide bioprotonic field-effect transistor
    Chao Zhong
    Yingxin Deng
    Anita Fadavi Roudsari
    Adnan Kapetanovic
    M.P. Anantram
    Marco Rolandi
    [J]. Nature Communications, 2
  • [38] AN EPITAXIAL GAAS FIELD-EFFECT TRANSISTOR
    HOOPER, WW
    LEHRER, WI
    [J]. PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1967, 55 (07): : 1237 - &
  • [39] AN EPITAXIAL GAAS FIELD-EFFECT TRANSISTOR
    SHAPIRO, JS
    GIORGIO, V
    [J]. PROCEEDINGS OF THE IEEE, 1969, 57 (11) : 2085 - &
  • [40] SUPERCONDUCTIVE MAGNETOELECTRIC FIELD-EFFECT TRANSISTOR
    HSIANG, TY
    SOBOLEWSKI, R
    [J]. IEEE ELECTRON DEVICE LETTERS, 1989, 10 (05) : 183 - 185