Enhanced biomechanical performance of additively manufactured Ti-6Al-4V bone plates

被引:26
|
作者
Gupta, Saurabh Kumar [1 ]
Shahidsha, Nagur [1 ]
Bahl, Sumit [1 ,4 ]
Kedaria, Dhaval [1 ]
Singamneni, Sarat [2 ]
Yarlagadda, Prasad K. D., V [3 ]
Suwas, Satyam [1 ]
Chatterjee, Kaushik [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bangalore, Karnataka, India
[2] Auckland Univ Technol, Dept Mech Engn, Auckland, New Zealand
[3] Queensland Univ Technol, Sci & Engn Fac, Sch Chem Phys & Mech Engn, Brisbane, Qld, Australia
[4] Oak Ridge Natl Lab, Oak Ridge, TN USA
关键词
Bone plate; Ti-6Al-4V alloy; Selective laser melting; Microstructure; Mechanical properties; Heat treatment; ALPHA-PHASE TRANSFORMATION; TENSILE BEHAVIOR; HEAT-TREATMENT; MECHANICAL-PROPERTIES; CORROSION BEHAVIOR; VARIANT SELECTION; TITANIUM-ALLOY; LASER; MICROSTRUCTURE; MARTENSITE;
D O I
10.1016/j.jmbbm.2021.104552
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
As the global trauma fixation devices market expands rapidly, it is imperative to improve the production of fixation devices through enhanced design accuracy and fit for best performance and maximum patient comfort. Selective laser melting (SLM) is one of the mature additive manufacturing methods, which provides a viable route for the rapid production of such devices. In this work, the ability of SLM to produce near-net-shape parts, as desired for medical implants, was utilized for the fabrication of bone plates from Ti-6Al-4V alloy powder. Martensitic microstructure obtained after the printing of alloy resulted in poor ductility, limiting its application in the field of orthopedics. A specially designed repeated cyclic heating and cooling close to but below the beta-transus was used to transform from acicular to a bimodal microstructure without the need for plastic deformation prior to heat treatment for improving the ductility. Bone plates subjected to this heat treatment were mechanically tested by means of tensile and 3-point bend tests and demonstrated large improvement in ductility, and the values were comparable to those similar plates prepared from wrought alloy. Other important properties required for implants were assessed, such as corrosion resistance in simulated body fluid and cytocompatibility in vitro using MC3T3-E1 cells. These results for the bone plate after heat treatment were excellent and similar to those of the additively manufactured and wrought plates. Taken together, the performance of the additively manufactured bone plates after subjecting to heat treatment was similar to those of bone plate manufactured using wrought alloy. These results have important implications for the fabrication of patient-specific metallic orthopedic devices using SLM without compromising their biomechanical performance by subjecting them to a tailored heat treatment.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Effect of different hydrogen Fugacities on the microstructure of additively manufactured Ti-6Al-4V
    Metalnikov, Polina
    Kaya, Ali Arslan
    Ben-Hamu, Guy
    Eliezer, Dan
    MATERIALS CHARACTERIZATION, 2023, 205
  • [42] The State of the Art in Machining Additively Manufactured Titanium Alloy Ti-6Al-4V
    Zhang, Chen
    Zou, Dongyi
    Mazur, Maciej
    Mo, John P. T.
    Li, Guangxian
    Ding, Songlin
    MATERIALS, 2023, 16 (07)
  • [43] Accelerating globularization in additively manufactured Ti-6Al-4V by exploiting martensitic laths
    Kim, In-Su
    Oh, Jeong Mok
    Lee, Sang Won
    Yeom, Jong-Taek
    Hong, Jae-Keun
    Park, Chan Hee
    Lee, Taekyung
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 12 : 304 - 315
  • [44] Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V
    Pegues, Jonathan
    Roach, Michael
    Williamson, R. Scott
    Shamsaei, Nima
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 116 : 543 - 552
  • [45] Directional and oscillating residual stress on the mesoscale in additively manufactured Ti-6Al-4V
    Strantza, M.
    Vrancken, B.
    Prime, M. B.
    Truman, C. E.
    Rombouts, M.
    Brown, D. W.
    Guillaume, P.
    Van Hemelrijck, D.
    ACTA MATERIALIA, 2019, 168 : 299 - 308
  • [46] Enhanced crack buffering of additively manufactured Ti-6Al-4V alloy using calcium fluoride particles
    Yin, Bo
    Cao, Meiguang
    Sun, Yu
    Cao, Angang
    Zhang, Zhonglin
    Leng, Zhe
    Feng, Wuwei
    Shi, Xuezhi
    Han, Ruiqi
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 5653 - 5665
  • [47] Cyclic behaviour modelling of additively manufactured Ti-6Al-4V lattice structures
    Doroszko, Michal
    Seweryn, Andrzej
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 273
  • [48] Effect of scanning strategy on variant selection in additively manufactured Ti-6Al-4V
    Stephenson, P. L.
    Haghdadi, N.
    DeMott, R.
    Liao, X. Z.
    Ringer, S. P.
    Primig, S.
    ADDITIVE MANUFACTURING, 2020, 36
  • [49] Computational biomechanical analysis of Ti-6Al-4V porous bone plates for lower limb fractures
    Mehboob, Ali
    Mehboob, Hassan
    Ouldyerou, Abdelhak
    Barsoum, Imad
    MATERIALS & DESIGN, 2024, 240
  • [50] Predicting the fatigue performance of an additively manufactured Ti-6Al-4V component from witness coupon behavior
    Li, P.
    Warner, D. H.
    Phan, N.
    ADDITIVE MANUFACTURING, 2020, 35