Enhanced biomechanical performance of additively manufactured Ti-6Al-4V bone plates

被引:26
|
作者
Gupta, Saurabh Kumar [1 ]
Shahidsha, Nagur [1 ]
Bahl, Sumit [1 ,4 ]
Kedaria, Dhaval [1 ]
Singamneni, Sarat [2 ]
Yarlagadda, Prasad K. D., V [3 ]
Suwas, Satyam [1 ]
Chatterjee, Kaushik [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bangalore, Karnataka, India
[2] Auckland Univ Technol, Dept Mech Engn, Auckland, New Zealand
[3] Queensland Univ Technol, Sci & Engn Fac, Sch Chem Phys & Mech Engn, Brisbane, Qld, Australia
[4] Oak Ridge Natl Lab, Oak Ridge, TN USA
关键词
Bone plate; Ti-6Al-4V alloy; Selective laser melting; Microstructure; Mechanical properties; Heat treatment; ALPHA-PHASE TRANSFORMATION; TENSILE BEHAVIOR; HEAT-TREATMENT; MECHANICAL-PROPERTIES; CORROSION BEHAVIOR; VARIANT SELECTION; TITANIUM-ALLOY; LASER; MICROSTRUCTURE; MARTENSITE;
D O I
10.1016/j.jmbbm.2021.104552
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
As the global trauma fixation devices market expands rapidly, it is imperative to improve the production of fixation devices through enhanced design accuracy and fit for best performance and maximum patient comfort. Selective laser melting (SLM) is one of the mature additive manufacturing methods, which provides a viable route for the rapid production of such devices. In this work, the ability of SLM to produce near-net-shape parts, as desired for medical implants, was utilized for the fabrication of bone plates from Ti-6Al-4V alloy powder. Martensitic microstructure obtained after the printing of alloy resulted in poor ductility, limiting its application in the field of orthopedics. A specially designed repeated cyclic heating and cooling close to but below the beta-transus was used to transform from acicular to a bimodal microstructure without the need for plastic deformation prior to heat treatment for improving the ductility. Bone plates subjected to this heat treatment were mechanically tested by means of tensile and 3-point bend tests and demonstrated large improvement in ductility, and the values were comparable to those similar plates prepared from wrought alloy. Other important properties required for implants were assessed, such as corrosion resistance in simulated body fluid and cytocompatibility in vitro using MC3T3-E1 cells. These results for the bone plate after heat treatment were excellent and similar to those of the additively manufactured and wrought plates. Taken together, the performance of the additively manufactured bone plates after subjecting to heat treatment was similar to those of bone plate manufactured using wrought alloy. These results have important implications for the fabrication of patient-specific metallic orthopedic devices using SLM without compromising their biomechanical performance by subjecting them to a tailored heat treatment.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Hydrogen-Aided Microstructural Engineering of Additively Manufactured Ti-6Al-4V
    Draelos-Hagerty, Lara
    Paramore, James D.
    Butler, Brady G.
    Nandwana, Peeyush
    Srivastava, Ankit
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2023, 54 (06): : 3451 - 3461
  • [32] Utilization of a microstructure sensitive fatigue model for additively manufactured Ti-6Al-4V
    Torries, Brian
    Sterling, Amanda J.
    Shamsaei, Nima
    Thompson, Scott M.
    Daniewicz, Steve R.
    RAPID PROTOTYPING JOURNAL, 2016, 22 (05) : 817 - 825
  • [33] Cyclic plasticity of additively manufactured Ti-6Al-4V bracket for aeroengine application
    Li, Ming
    Gupta, Alok
    Bennett, Chris J.
    Yue, Zhu-Feng
    Sun, Wei
    Tu, Shan-Tung
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 258
  • [34] Factors affecting the fatigue strength of additively manufactured Ti-6Al-4V parts
    Johnsen, Anders Rygg
    Petersen, Jan Erik
    Pedersen, Mikkel Melters
    Yildirim, Halid Can
    WELDING IN THE WORLD, 2023, 68 (2) : 361 - 409
  • [35] A review on in vitro/in vivo response of additively manufactured Ti-6Al-4V alloy
    Alipour, Saeid
    Nour, Shirin
    Attari, Seyyed Morteza
    Mohajeri, Mohammad
    Kianersi, Sogol
    Taromian, Farzaneh
    Khalkhali, Mohammadparsa
    Aninwene, George E., II
    Tayebi, Lobat
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (46) : 9479 - 9534
  • [36] Factors affecting the fatigue strength of additively manufactured Ti-6Al-4V parts
    Anders Rygg Johnsen
    Jan Erik Petersen
    Mikkel Melters Pedersen
    Halid Can Yıldırım
    Welding in the World, 2024, 68 : 361 - 409
  • [37] Hot Isostatic Pressing for Fatigue Critical Additively Manufactured Ti-6Al-4V
    Moran, Terrence P.
    Carrion, Patricio E.
    Lee, Seungjong
    Shamsaei, Nima
    Phan, Nam
    Warner, Derek H.
    MATERIALS, 2022, 15 (06)
  • [38] Microstructure effects on fatigue crack growth in additively manufactured Ti-6Al-4V
    VanSickle, Raeann
    Foehring, David
    Chew, Huck Beng
    Lambros, John
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 795
  • [39] A survey of fatigue properties from wrought and additively manufactured Ti-6Al-4V
    Rao, Jeremy H.
    Stanford, Nikki
    MATERIALS LETTERS, 2021, 283
  • [40] Electropolishing of Additively Manufactured Ti-6Al-4V Surfaces in Nontoxic Electrolyte Solution
    Tsoeunyane, G. M.
    Mathe, N.
    Tshabalala, L.
    Makhatha, M. E.
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2022, 2022