Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system

被引:80
|
作者
Halpin-Healy, Tyler S. [1 ]
Klompe, Sanne E. [1 ]
Sternberg, Samuel H. [1 ]
Fernandez, Israel S. [1 ]
机构
[1] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10027 USA
关键词
GUIDED SURVEILLANCE COMPLEX; CRYO-EM; CRYSTAL-STRUCTURE; REFINEMENT; MECHANISMS;
D O I
10.1038/s41586-019-1849-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacteria use adaptive immune systems encoded by CRISPR and Cas genes to maintain genomic integrity when challenged by pathogens and mobile genetic elements(1-3). Type I CRISPR-Cas systems typically target foreign DNA for degradation via joint action of the ribonucleoprotein complex Cascade and the helicase-nuclease Cas3(4,5), but nuclease-deficient type I systems lacking Cas3 have been repurposed for RNA-guided transposition by bacterial Tn7-like transposons(6,7). How CRISPR- and transposon-associated machineries collaborate during DNA targeting and insertion remains unknown. Here we describe structures of a TniQ-Cascade complex encoded by the Vibrio cholerae Tn6677 transposon using cryo-electron microscopy, revealing the mechanistic basis of this functional coupling. The cryo-electron microscopy maps enabled de novo modelling and refinement of the transposition protein TniQ, which binds to the Cascade complex as a dimer in a head-to-tail configuration, at the interface formed by Cas6 and Cas7 near the 3' end of the CRISPR RNA (crRNA). The natural Cas8-Cas5 fusion protein binds the 5' crRNA handle and contacts the TniQ dimer via a flexible insertion domain. A target DNA-bound structure reveals critical interactions necessary for protospacer-adjacent motif recognition and R-loop formation. This work lays the foundation for a structural understanding of how DNA targeting by TniQ-Cascade leads to downstream recruitment of additional transposase proteins, and will guide protein engineering efforts to leverage this system for programmable DNA insertions in genome-engineering applications.
引用
收藏
页码:271 / +
页数:15
相关论文
共 50 条
  • [41] Domain dynamics and plasticity of the transposon-encoded cascade-TniQ system
    Patel, Amun C.
    Arantes, Pablo R.
    Palermo, Giulia
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 451A - 451A
  • [42] An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition
    Hullahalli, Karthik
    Rodrigues, Marinelle
    Uyen Thy Nguyen
    Palmer, Kelli
    MBIO, 2018, 9 (03):
  • [43] CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy
    Chen, Shuliang
    Yu, Xiao
    Guo, Deyin
    VIRUSES-BASEL, 2018, 10 (01):
  • [44] RNA-Targeting CRISPR-Cas Systems and Their Applications
    Burmistrz, Michal
    Krakowski, Kamil
    Krawczyk-Balska, Agata
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (03)
  • [45] Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems
    Wang, Jiuyu
    Li, Jiazhi
    Zhao, Hongtu
    Sheng, Gang
    Wang, Min
    Yin, Maolu
    Wang, Yanli
    CELL, 2015, 163 (04) : 840 - 853
  • [46] CRISPR-Cas systems for editing, regulating and targeting genomes
    Jeffry D Sander
    J Keith Joung
    Nature Biotechnology, 2014, 32 : 347 - 355
  • [47] CRISPR-Cas systems for editing, regulating and targeting genomes
    Sander, Jeffry D.
    Joung, J. Keith
    NATURE BIOTECHNOLOGY, 2014, 32 (04) : 347 - 355
  • [48] Unveiling cas8 dynamics and regulation of a transposon-encoded Cascade-TniQ complex
    Patel, Amun
    Sinha, Souvik
    Arantes, Pablo Ricardo
    Palermo, Giulia
    PROTEIN SCIENCE, 2023, 32 (12)
  • [49] The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus
    Terns, Rebecca M.
    Terns, Michael P.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2013, 41 : 1416 - 1421
  • [50] Potential of the CRISPR-Cas system for improved parasite diagnosis CRISPR-Cas mediated diagnosis in parasitic infections
    You, Hong
    Gordon, Catherine A.
    MacGregor, Skye R.
    Cai, Pengfei
    McManus, Donald P.
    BIOESSAYS, 2022, 44 (04)